The Pascal Reserved Words and Required Identifiers
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Decimal Rounding
Mathematics Instructional Plan – Grade 5 Decimal Rounding Strand: Number and Number Sense Topic: Rounding decimals, through the thousandths, to the nearest whole number, tenth, or hundredth. Primary SOL: 5.1 The student, given a decimal through thousandths, will round to the nearest whole number, tenth, or hundredth. Materials Base-10 blocks Decimal Rounding activity sheet (attached) “Highest or Lowest” Game (attached) Open Number Lines activity sheet (attached) Ten-sided number generators with digits 0–9, or decks of cards Vocabulary approximate, between, closer to, decimal number, decimal point, hundredth, rounding, tenth, thousandth, whole Student/Teacher Actions: What should students be doing? What should teachers be doing? 1. Begin with a review of decimal place value: Display a decimal in the thousandths place, such as 34.726, using base-10 blocks. In pairs, have students discuss how to read the number using place-value names, and review the decimal place each digit holds. Briefly have students share their thoughts with the class by asking: What digit is in the tenths place? The hundredths place? The thousandths place? Who would like to share how to say this decimal using place value? 2. Ask, “If this were a monetary amount, $34.726, how would we determine the amount to the nearest cent?” Allow partners or small groups to discuss this question. It may be helpful if students underlined the place that indicates cents (the hundredths place) in order to keep track of the rounding place. Distribute the Open Number Lines activity sheet and display this number line on the board. Guide students to recall that the nearest cent is the same as the nearest hundredth of a dollar. -
Cognitive Programming Language (CPL) Programmer's Guide
Cognitive Programming Language (CPL) Programmer's Guide 105-008-02 Revision C2 – 3/17/2006 *105-008-02* Copyright © 2006, Cognitive. Cognitive™, Cxi™, and Ci™ are trademarks of Cognitive. Microsoft® and Windows™ are trademarks of Microsoft Corporation. Other product and corporate names used in this document may be trademarks or registered trademarks of other companies, and are used only for explanation and to their owner’s benefit, without intent to infringe. All information in this document is subject to change without notice, and does not represent a commitment on the part of Cognitive. No part of this document may be reproduced for any reason or in any form, including electronic storage and retrieval, without the express permission of Cognitive. All program listings in this document are copyrighted and are the property of Cognitive and are provided without warranty. To contact Cognitive: Cognitive Solutions, Inc. 4403 Table Mountain Drive Suite A Golden, CO 80403 E-Mail: [email protected] Telephone: +1.800.525.2785 Fax: +1.303.273.1414 Table of Contents Introduction.............................................................................................. 1 Label Format Organization .................................................................. 2 Command Syntax................................................................................ 2 Important Programming Rules............................................................. 3 Related Publications........................................................................... -
A Compiler for a Simple Language. V0.16
Project step 1 – a compiler for a simple language. v0.16 Change log: v0.16, changes from 0.15 Make all push types in compiler actions explicit. Simplified and better documentation of call and callr instruction compiler actions. Let the print statement print characters and numbers. Added a printv statement to print variables. Changed compiler actions for retr to push a variable value, not a literal value. Changes are shown in orange. v0.15, changes from 0.14 Change compiler actions for ret, retr, jmp. Change the description and compiler actions for poke. Change the description for swp. Change the compiler actions for call and callr. Changes shown in green. v0.14, changes from 0.13 Add peek, poke and swp instructions. Change popm compiler actions. Change callr compiler actions. Other small changes to wording. Changes are shown in blue. v0.13, changes from 0.12 Add a count field to subr, call and callr to simplify code generation. Changes are shown in red. v0.12 Changes from 0.11. Added a callr statement that takes a return type. Fix the generated code for this and for call to allow arguments to be pushed by the call. Add a retr that returns a value and update the reg. v0.11: changes from 0.10. Put typing into push operators. Put opcodes for compare operators. fix actions for call. Make declarations reserve a stack location. Remove redundant store instruction (popv does the same thing.) v0.10: changes from 0.0. Comparison operators (cmpe, cmplt, cmpgt) added. jump conditional (jmpc) added. bytecode values added. -
Programming Basics - FORTRAN 77
CWCS Workshop May 2005 Programming Basics - FORTRAN 77 http://www.physics.nau.edu/~bowman/PHY520/F77tutor/tutorial_77.html Program Organization A FORTRAN program is just a sequence of lines of plain text. This is called the source code. The text has to follow certain rules (syntax) to be a valid FORTRAN program. We start by looking at a simple example: program circle real r, area, pi c This program reads a real number r and prints c the area of a circle with radius r. write (*,*) 'Give radius r:' read (*,*) r pi = atan(1.0e0)*4.0e0 area = pi*r*r write (*,*) 'Area = ', area end A FORTRAN program generally consists of a main program and possibly several subprograms (i.e., functions or subroutines). The structure of a main program is: program name declarations statements end Note: Words that are in italics should not be taken as literal text, but rather as a description of what belongs in their place. FORTRAN is not case-sensitive, so "X" and "x" are the same variable. Blank spaces are ignored in Fortran 77. If you remove all blanks in a Fortran 77 program, the program is still acceptable to a compiler but almost unreadable to humans. Column position rules Fortran 77 is not a free-format language, but has a very strict set of rules for how the source code should be formatted. The most important rules are the column position rules: Col. 1: Blank, or a "c" or "*" for comments Col. 1-5: Blank or statement label Col. 6: Blank or a "+" for continuation of previous line Col. -
IEEE Standard 754 for Binary Floating-Point Arithmetic
Work in Progress: Lecture Notes on the Status of IEEE 754 October 1, 1997 3:36 am Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic Prof. W. Kahan Elect. Eng. & Computer Science University of California Berkeley CA 94720-1776 Introduction: Twenty years ago anarchy threatened floating-point arithmetic. Over a dozen commercially significant arithmetics boasted diverse wordsizes, precisions, rounding procedures and over/underflow behaviors, and more were in the works. “Portable” software intended to reconcile that numerical diversity had become unbearably costly to develop. Thirteen years ago, when IEEE 754 became official, major microprocessor manufacturers had already adopted it despite the challenge it posed to implementors. With unprecedented altruism, hardware designers had risen to its challenge in the belief that they would ease and encourage a vast burgeoning of numerical software. They did succeed to a considerable extent. Anyway, rounding anomalies that preoccupied all of us in the 1970s afflict only CRAY X-MPs — J90s now. Now atrophy threatens features of IEEE 754 caught in a vicious circle: Those features lack support in programming languages and compilers, so those features are mishandled and/or practically unusable, so those features are little known and less in demand, and so those features lack support in programming languages and compilers. To help break that circle, those features are discussed in these notes under the following headings: Representable Numbers, Normal and Subnormal, Infinite -
Fortran 90 Programmer's Reference
Fortran 90 Programmer’s Reference First Edition Product Number: B3909DB Fortran 90 Compiler for HP-UX Document Number: B3908-90002 October 1998 Edition: First Document Number: B3908-90002 Remarks: Released October 1998. Initial release. Notice Copyright Hewlett-Packard Company 1998. All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws. The information contained in this document is subject to change without notice. Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. Contents Preface . xix New in HP Fortran 90 V2.0. .xx Scope. xxi Notational conventions . xxii Command syntax . xxiii Associated documents . xxiv 1 Introduction to HP Fortran 90 . 1 HP Fortran 90 features . .2 Source format . .2 Data types . .2 Pointers . .3 Arrays . .3 Control constructs . .3 Operators . .4 Procedures. .4 Modules . .5 I/O features . .5 Intrinsics . .6 2 Language elements . 7 Character set . .8 Lexical tokens . .9 Names. .9 Program structure . .10 Statement labels . .10 Statements . .11 Source format of program file . .13 Free source form . .13 Source lines . .14 Statement labels . .14 Spaces . .14 Comments . .15 Statement continuation . .15 Fixed source form . .16 Spaces . .16 Source lines . .16 Table of Contents i INCLUDE line . 19 3 Data types and data objects . 21 Intrinsic data types . 22 Type declaration for intrinsic types . -
Control Flow Graphs • Can Be Done at High Level Or Low Level – E.G., Constant Folding
Optimizations • Code transformations to improve program – Mainly: improve execution time – Also: reduce program size Control Flow Graphs • Can be done at high level or low level – E.g., constant folding • Optimizations must be safe – Execution of transformed code must yield same results as the original code for all possible executions 1 2 Optimization Safety Optimization Safety • Safety of code transformations usually requires certain • Safety of code transformations usually requires certain information that may not be explicit in the code information which may not explicit in the code • Example: dead code elimination • Example: dead code elimination (1) x = y + 1; (1) x = y + 1; (2) y = 2 * z; (2) y = 2 * z; (3) x=y+z;x = y + z; (3) x=y+z;x = y + z; (4) z = 1; (4) z = 1; (5) z = x; (5) z = x; • What statements are dead and can be removed? • Need to know whether values assigned to x at (1) is never used later (i.e., x is dead at statement (1)) – Obvious for this simple example (with no control flow) – Not obvious for complex flow of control 3 4 1 Dead Variable Example Dead Variable Example • Add control flow to example: • Add control flow to example: x = y + 1; x = y + 1; y = 2 * z; y = 2 * z; if (d) x = y+z; if (d) x = y+z; z = 1; z = 1; z = x; z = x; • Statement x = y+1 is not dead code! • Is ‘x = y+1’ dead code? Is ‘z = 1’ dead code? •On some executions, value is used later 5 6 Dead Variable Example Dead Variable Example • Add more control flow: • Add more control flow: while (c) { while (c) { x = y + 1; x = y + 1; y = 2 * z; y = 2 -
Variables and Calculations
¡ ¢ £ ¤ ¥ ¢ ¤ ¦ § ¨ © © § ¦ © § © ¦ £ £ © § ! 3 VARIABLES AND CALCULATIONS Now you’re ready to learn your first ele- ments of Python and start learning how to solve programming problems. Although programming languages have myriad features, the core parts of any programming language are the instructions that perform numerical calculations. In this chapter, we’ll explore how math is performed in Python programs and learn how to solve some prob- lems using only mathematical operations. ¡ ¢ £ ¤ ¥ ¢ ¤ ¦ § ¨ © © § ¦ © § © ¦ £ £ © § ! Sample Program Let’s start by looking at a very simple problem and its Python solution. PROBLEM: THE TOTAL COST OF TOOTHPASTE A store sells toothpaste at $1.76 per tube. Sales tax is 8 percent. For a user-specified number of tubes, display the cost of the toothpaste, showing the subtotal, sales tax, and total, including tax. First I’ll show you a program that solves this problem: toothpaste.py tube_count = int(input("How many tubes to buy: ")) toothpaste_cost = 1.76 subtotal = toothpaste_cost * tube_count sales_tax_rate = 0.08 sales_tax = subtotal * sales_tax_rate total = subtotal + sales_tax print("Toothpaste subtotal: $", subtotal, sep = "") print("Tax: $", sales_tax, sep = "") print("Total is $", total, " including tax.", sep = ") Parts of this program may make intuitive sense to you already; you know how you would answer the question using a calculator and a scratch pad, so you know that the program must be doing something similar. Over the next few pages, you’ll learn exactly what’s going on in these lines of code. For now, enter this program into your Python editor exactly as shown and save it with the required .py extension. Run the program several times with different responses to the question to verify that the program works. -
Introduction to the Python Language
Introduction to the Python language CS111 Computer Programming Department of Computer Science Wellesley College Python Intro Overview o Values: 10 (integer), 3.1415 (decimal number or float), 'wellesley' (text or string) o Types: numbers and text: int, float, str type(10) Knowing the type of a type('wellesley') value allows us to choose the right operator when o Operators: + - * / % = creating expressions. o Expressions: (they always produce a value as a result) len('abc') * 'abc' + 'def' o Built-in functions: max, min, len, int, float, str, round, print, input Python Intro 2 Concepts in this slide: Simple Expressions: numerical values, math operators, Python as calculator expressions. Input Output Expressions Values In [...] Out […] 1+2 3 3*4 12 3 * 4 12 # Spaces don't matter 3.4 * 5.67 19.278 # Floating point (decimal) operations 2 + 3 * 4 14 # Precedence: * binds more tightly than + (2 + 3) * 4 20 # Overriding precedence with parentheses 11 / 4 2.75 # Floating point (decimal) division 11 // 4 2 # Integer division 11 % 4 3 # Remainder 5 - 3.4 1.6 3.25 * 4 13.0 11.0 // 2 5.0 # output is float if at least one input is float 5 // 2.25 2.0 5 % 2.25 0.5 Python Intro 3 Concepts in this slide: Strings and concatenation string values, string operators, TypeError A string is just a sequence of characters that we write between a pair of double quotes or a pair of single quotes. Strings are usually displayed with single quotes. The same string value is created regardless of which quotes are used. -
FORTRAN 77 Language Reference
FORTRAN 77 Language Reference FORTRAN 77 Version 5.0 901 San Antonio Road Palo Alto, , CA 94303-4900 USA 650 960-1300 fax 650 969-9131 Part No: 805-4939 Revision A, February 1999 Copyright Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. UNIX is a registered trademark in the United States and in other countries and is exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers. RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). Sun, Sun Microsystems, the Sun logo, SunDocs, SunExpress, Solaris, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, Sun WorkShop, and Sun WorkShop Professional are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and in other countries. -
Dynamic Security Labels and Noninterference
Dynamic Security Labels and Noninterference Lantian Zheng Andrew C. Myers Computer Science Department Cornell University {zlt,andru}@cs.cornell.edu Abstract This paper explores information flow control in systems in which the security classes of data can vary dynamically. Information flow policies provide the means to express strong security requirements for data confidentiality and integrity. Recent work on security-typed programming languages has shown that information flow can be analyzed statically, ensuring that programs will respect the restrictions placed on data. However, real computing systems have security policies that vary dynamically and that cannot be determined at the time of program analysis. For example, a file has associated access permissions that cannot be known with certainty until it is opened. Although one security-typed programming lan- guage has included support for dynamic security labels, there has been no examination of whether such a mechanism can securely control information flow. In this paper, we present an expressive language- based mechanism for securely manipulating dynamic security labels. The mechanism is presented both in the context of a Java-like programming language and, more formally, in a core language based on the typed lambda calculus. This core language is expressive enough to encode previous dynamic label mechanisms; as importantly, any well-typed program is provably secure because it satisfies noninterfer- ence. 1 Introduction Information flow control protects information security by constraining how information is transmitted among objects and users of various security classes. These security classes are expressed as labels associated with the information or its containers. Dynamic labels, labels that can be manipulated and checked at run time, are vital for modeling real systems in which security policies may be changed dynamically. -
X86 Assembly Language Reference Manual
x86 Assembly Language Reference Manual Part No: 817–5477–11 March 2010 Copyright ©2010 Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms setforth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.