Investigation of the Resistance to Demagnetization in Bulk Rare-Earth

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of the Resistance to Demagnetization in Bulk Rare-Earth Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 INVESTIGATION OF THE RESISTANCE TO DEMAGNETIZATION IN BULK RARE-EARTH MAGNETS COMPRISED OF CRYSTALLOGRAPHICALLY-ALIGNED, SINGLE-DOMAIN CRYSTALLITES WITH MODIFIED INTERGRANULAR PHASE Jie Li Michigan Technological University, [email protected] Copyright 2016 Jie Li Recommended Citation Li, Jie, "INVESTIGATION OF THE RESISTANCE TO DEMAGNETIZATION IN BULK RARE-EARTH MAGNETS COMPRISED OF CRYSTALLOGRAPHICALLY-ALIGNED, SINGLE-DOMAIN CRYSTALLITES WITH MODIFIED INTERGRANULAR PHASE", Open Access Dissertation, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/131 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Engineering Physics Commons, and the Metallurgy Commons INVESTIGATION OF THE RESISTANCE TO DEMAGNETIZATION IN BULK RARE-EARTH MAGNETS COMPRISED OF CRYSTALLOGRAPHICALLY- ALIGNED, SINGLE-DOMAIN CRYSTALLITES WITH MODIFIED INTERGRANULAR PHASE By Jie Li A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Engineering Physics MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jie Li This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Engineering Physics. Department of Physics Dissertation Advisor: Peter D. Moran Committee Member: Ravindra Pandey Committee Member: Stephen Hackney Committee Member: Stephen Kampe Committee Member: Yongmei Jin Department Chair: Ravindra Pandey Content List of Tables ..................................................................................................................... vi List of Figures ................................................................................................................... vii Acknowledgements ............................................................................................................ xi Abstract ............................................................................................................................ xiii Chapter 1 Introduction ................................................................................................... 1 1.1 Research Goal ...................................................................................................... 1 1.2 Motivations for Research ..................................................................................... 2 1.3 Organization of the Dissertation .......................................................................... 3 Chapter 2 Background ................................................................................................... 5 2.1 Intrinsic Magnetic Properties ............................................................................... 5 2.2 Effect of Chemical Compositions on MS and HK ................................................. 8 2.3 Effect of Volume Percent of Hard Phase on MS and HK .................................... 11 2.4 Demagnetization Curves and the Definition of Coercivity and Remanence ..... 11 2.5 Effect of Microstructure on HC and Br ............................................................... 13 2.5.1 Magnetic Domain........................................................................................ 14 2.5.2 The Phenomenological Model for Understanding the Impact of Microstructure on Hc ................................................................................................ 16 iii 2.6 Methods of Manufacturing RE2TM14B Magnets ............................................... 19 2.6.1 Sintering Process ......................................................................................... 19 2.6.2 Hot-Deformation Process............................................................................ 22 2.6.3 Preferential Dissolution/Re-precipitation Mechanism ................................ 24 2.7 The Effect of Intergranular Phase on Magnetic Properties ................................ 27 Chapter 3 Experimental Techniques............................................................................ 31 3.1 Grain Size Measurement .................................................................................... 31 3.2 Developing a Quantitative Metric of Crystallographic Alignment .................... 32 3.3 Measuring Remanence and Coercivity with VSM ............................................. 37 Chapter 4 Characteristics of RE2TM14B Magnets Used in Traction Motors of Hybrid and Electric Vehicles ............................................................................................................... 39 4.1 Structure of the Experiments ................................................................................ 40 4.2 Results and Discussion ......................................................................................... 41 4.3 Conclusions ........................................................................................................... 47 Chapter 5 Impact of Hot-deformation Parameters on Microstructural and Magnetic Properties of RE2TM14B Magnets .................................................................................... 49 5.1 Experimental Design ............................................................................................. 50 5.2 Results and Discussion ......................................................................................... 51 5.2.1 Hot Deformation Parameters on Microstructural Properties of Magnets ...... 52 5.2.2 Hot Deformation Parameters on Magnetic Properties of Magnets ................ 59 iv 5.3 Conclusions ........................................................................................................... 61 Chapter 6 Effect of Modifying Inter-granular Phase on Microstructural and Magnetic Properties of RE2TM14B Magnets .................................................................................... 62 6.1 Experimental Design ............................................................................................. 63 6.2 Results and Discussion ......................................................................................... 64 6.2.1 Microstructural Properties of Hot-deformed Magnets with Modified Intergranular Phase ................................................................................................... 64 6.2.2 Magnetic Properties of Developed Hot-deformed Magnets ............................ 68 6.2.3 Impact of Diluting Intergranular Phase on Magnetic Properties of Hot-deformed Magnets ..................................................................................................................... 71 6.3 Conclusions ........................................................................................................... 81 Chapter 7 Summary .......................................................................................................... 83 References ......................................................................................................................... 86 v List of Tables Table 2-1 Other research work on analyzing the impact of intergranular phase on magnetic properties of Nd2Fe14B-based materials ............................................................................ 27 Table 4-1The chemical compositions of the materials examined in this work ................. 41 Table 5-1Hot deformation parameters for each sample .................................................... 51 Table 6-1 Calculated value of MS, HK for [Dy0.08Pr0.24Nd0.68]2[Fe0.94Co0.06]14B and experimental value of MS, HK for Nd2Fe14B ..................................................................... 74 Table 6-2 Values of parameters α and Neff for hot-deformed Nd2Fe14B-based magnetic materials. ........................................................................................................................... 75 vi List of Figures Figure 2-1 The tetragonal unit cell of the Nd2Fe14B crystal structure, image created with Pearson’s Crystal Data software using a crystallography data base[1]. ............................. 8 Figure 2-2 Saturation magnetization and anisotropy field of pure RE2Fe14B magnet as a function of temperature.[5] ............................................................................................... 10 Figure 2-3 Saturation magnetization and anisotropy field of Nd2[Fe1-mCom]14B at different temperatures.[6] ................................................................................................................ 10 Figure 2-4 A typical hysteresis loop of a permanent magnet. .......................................... 13 Figure 2-5 The formation of magnetic domains. .............................................................. 14 Figure 2-6 Sketch of magnetic press part in the magnetic sintering process .................... 20 Figure 2-7 Cross-sectional SEM image of sintered magnets. ........................................... 21 Figure 2-8 Surface Dy diffusion process patterned by Hitachi. ........................................ 21 Figure 2-9 General steps of hot-deformation process: (1) melt-spining, (2) hot pressing and (3) hot deformation ........................................................................................................... 23 Figure 2-10 Microstructures of (a) sintered magnets and (b) hot-deformed magnets measured by SEM. ............................................................................................................ 24 Figure 2-11 Under
Recommended publications
  • Magnetic Materials: Hysteresis
    Magnetic Materials: Hysteresis Ferromagnetic and ferrimagnetic materials have non-linear initial magnetisation curves (i.e. the dotted lines in figure 7), as the changing magnetisation with applied field is due to a change in the magnetic domain structure. These materials also show hysteresis and the magnetisation does not return to zero after the application of a magnetic field. Figure 7 shows a typical hysteresis loop; the two loops represent the same data, however, the blue loop is the polarisation (J = µoM = B-µoH) and the red loop is the induction, both plotted against the applied field. Figure 7: A typical hysteresis loop for a ferro- or ferri- magnetic material. Illustrated in the first quadrant of the loop is the initial magnetisation curve (dotted line), which shows the increase in polarisation (and induction) on the application of a field to an unmagnetised sample. In the first quadrant the polarisation and applied field are both positive, i.e. they are in the same direction. The polarisation increases initially by the growth of favourably oriented domains, which will be magnetised in the easy direction of the crystal. When the polarisation can increase no further by the growth of domains, the direction of magnetisation of the domains then rotates away from the easy axis to align with the field. When all of the domains have fully aligned with the applied field saturation is reached and the polarisation can increase no further. If the field is removed the polarisation returns along the solid red line to the y-axis (i.e. H=0), and the domains will return to their easy direction of magnetisation, resulting in a decrease in polarisation.
    [Show full text]
  • Basic Design and Engineering of Normal-Conducting, Iron-Dominated Electromagnets
    Basic design and engineering of normal-conducting, iron-dominated electromagnets Th. Zickler CERN, Geneva, Switzerland Abstract The intention of this course is to provide guidance and tools necessary to carry out an analytical design of a simple accelerator magnet. Basic concepts and magnet types will be explained as well as important aspects which should be considered before starting the actual design phase. The central part of this course is dedicated to describing how to develop a basic magnet design. Subjects like the layout of the magnetic circuit, the excitation coils, and the cooling circuits will be discussed. A short introduction to materials for the yoke and coil construction and a brief summary about cost estimates for magnets will complete this topic. 1 Introduction The scope of these lectures is to give an overview of electromagnetic technology as used in and around particle accelerators considering normal-conducting, iron-dominated electromagnets generally restricted to direct current situations where we assume that the voltages generated by the change of flux and possible resulting eddy currents are negligible. Permanent and superconducting magnet technologies as well as special magnets like kickers and septa are not covered in this paper; they were part of dedicated special lectures. It is clear that it is difficult to give a complete and exhaustive summary of magnet design since there are many different magnet types and designs; in principle the design of a magnet is limited only by the laws of physics and the imagination of the magnet designer. Furthermore, each laboratory and each magnet designer or engineer has his own style of approaching a particular magnet design.
    [Show full text]
  • DMI Interaction and Domain Evolution in Magnetic Heterostructures with Perpendicular Magnetic Anisotropy
    Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Dissertations Department of Physics and Astronomy Spring 4-30-2018 DMI Interaction and Domain Evolution in Magnetic Heterostructures with Perpendicular Magnetic Anisotropy Jagodage Kasuni S. Nanayakkara Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss Recommended Citation Nanayakkara, Jagodage Kasuni S., "DMI Interaction and Domain Evolution in Magnetic Heterostructures with Perpendicular Magnetic Anisotropy." Dissertation, Georgia State University, 2018. https://scholarworks.gsu.edu/phy_astr_diss/102 This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. DMI INTERACTION AND DOMAIN EVOLUTION IN MAGNETIC HETEROSTRUCTURES WITH PERPENDICULAR MAGNETIC ANISOTROPY by JAGODAGE KASUNI NANAYAKKARA Under the Direction of Alexander Kozhanov, PhD ABSTRACT My thesis is dedicated to the study of the magnetic interactions and magnetization reversal dynamics in ferromagnetic heterostructures with perpendicular magnetic anisotropy (PMA). Two related projects will be included: 1) investigating interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayer structures; 2) controlled stripe domain growth in PMA heterostructures. Magneto Optic Kerr Effect microscopy and magnetometry techniques along with vibrating sample magnetometry were used to investigate these phenomena. The CoPt bi-layer system is a well-known PMA material system exhibiting DMI. However, films with many CoPt bi-layers are known as having zero effective DMI due to its inversion symmetry. I focused my research on CoNiPt tri-layer heterostructures with broken inversion symmetry.
    [Show full text]
  • Successful Observation of Magnetic Domains at 500℃ with Spin
    FOR IMMEDIATE RELEASE Successful observation of magnetic domains at 500℃ with spin-polarized scanning electron microscopy Contributing to magnetic material development and performance improvement of devices such as HDD Tokyo, September 21, 2010 --- Hitachi, Ltd. (NYSE : HIT/TSE : 6501, hereafter Hitachi) today announced the development of Spin-polarized Scanning Electron Microscopy (hereafter, spin-SEM) technology for observation of magnetic domains under high temperature conditions in a magnetic field. Using this technology, changes in the magnetic domain structure of a cobalt (Co) single crystal was visualized up to 500 degrees Celsius (C). By applying the technology developed, the temperature conditions for observing magnetic domains in a sample can be heated up to 500C when using only the heating unit, and up to 250C when used in combination with a function to apply a magnetic field of up to 1,000 Oersteds (Oe). As a result, it is now possible to fully utilize the spin-SEM feature of high-resolution magnetic domain observation while observing the effect of temperature and external magnetic field on magnetic materials. It is expected that in the future, this technology will contribute to the development of new materials for permanent magnets and performance improvements in magnetic devices such as hard disk drives (HDD), etc. Spin-SEM is scanning electron microscopy which focuses a squeezed electron beam on a sample surface and measures the spin (the smallest unit describing magnetic property) of the secondary electrons emitted from the sample to observe the magnetic domain (the region where the spin direction is the same). It has a high resolution (10nm for Hitachi instrument) compared with other magnetic domain observation instruments and can be used to analyze magnetization vector.
    [Show full text]
  • Characterization and Quantification of Magnetic Remanence in Unexploded Ordnance
    CHARACTERIZATION AND QUANTIFICATION OF MAGNETIC REMANENCE IN UNEXPLODED ORDNANCE by Whitney Elizabeth Goodrich A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date _______________ Signed: ____________________ Whitney Elizabeth Goodrich Approved: __________________ Dr. Gary Olhoeft Thesis Advisor Golden, Colorado Date ______________ ___________________________ Dr. Terence K. Young Professor and Head Department of Geophysics ii ABSTRACT Under the Range Rule (1997), the Department of Defense defines unexploded ordnance (UXO) as a piece of ordnance that has been deployed, but has not exploded. This study investigated a subset of UXO including artillery shells and mortars (projectiles), but excluding landmines. UXO contaminates approximately 15 million acres of land in the United States alone. The geophysical tools most frequently used for detection are electromagnetic and magnetic methods. These methods, however, produce a “hit” for any metallic object in the ground, not just UXO. In a given survey, this results in a large number of anomalies, only a small subset of which are actually UXO. Current practice dictates that most anomalies are dug up and identified, and the UXO is exploded in place. The estimated cost to remediate existing UXO, in the United States, with current methods, is tens to hundreds of billions of dollars. Discrimination is the process in which UXO (hazardous) is differentiated from non-UXO (non-hazardous), prior to anomaly excavation. Methods to discriminate the UXO greatly reduce the cost of remediation. Remanent magnetization in UXO is one quantity that must be understood to improve discrimination methodologies in the future.
    [Show full text]
  • Magnetic Forces ©Lluís Real/Age Fotostock
    DO NOT EDIT--Changes must be made through "File info" LONumber=6P1_0610=CorrectionKey=NL-A LESSON 1 Magnetic Forces ©Lluís Real/age fotostock Magnets are able to attract or repel certain materials, such as iron, at a distance. By the end of this lesson . © Houghton Mifflin Harcourt • Image Credits: you will be able to describe the variables that affect the strength and direction of the magnetic force. 96 Unit 2 Electric and Magnetic Forces DO NOT EDIT--Changes must be made through "File info" LONumber=6P1_0610=CorrectionKey=NL-B Go online to view the digital version of the Hands-On Lab for this lesson and to download additional lab resources. CAN YOU EXPLAIN IT? Why do these rings seem to float without touching one another instead of falling? If you were to drop one of these rings onto a peg, you would normally expect it to fall and hit Explore another ring. Instead, when the rings get near one another, they are pushed back up and appear to float. ONLINE! 1. Most objects are not able to float in midair. What must be occurring for these rings to float instead of fall? ©Houghton Mifflin Harcourt 2. What type of force might be affecting the motion of these rings? © Houghton Mifflin Harcourt • Image Credits: © Houghton Mifflin Harcourt • Image Credits: EVIDENCE NOTEBOOK As you explore the lesson, gather evidence to help explain the behavior of the rings. Lesson 1 Magnetic Forces 97 DO NOT EDIT--Changes must be made through “File info” LONumber=6P1_0610=CorrectionKey=NL-B EXPLORATION 1 Describing Magnets and the Magnetic Force A magnet is an object that attracts, or pulls on, Magnet Interactions materials that contain iron.
    [Show full text]
  • Electromagnetic Spacecraft Used for Magnetic Navigation Within Asteroid Belt, Mining Concepts and Asteroid Magnetic Classification G
    Lunar and Planetary Science XXXVIII (2007) 1093.pdf ELECTROMAGNETIC SPACECRAFT USED FOR MAGNETIC NAVIGATION WITHIN ASTEROID BELT, MINING CONCEPTS AND ASTEROID MAGNETIC CLASSIFICATION G. Kletetschka 1,2,3, T. Adachi1,2, and V. Mikula1,2, 1Department of Physics, Catholic University of America, Washington DC, USA, 2NASA Goddard Space Flight Center, Greenbelt, MD, USA, 3Institute of Geology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. Introduction: The objective of asteroid investiga- ments from asteroidal bodies, using them to adjust the tion is an establishment of the remote data acquisition speed and direction of the spacecraft and finally use system allowing sufficient characterization and classi- magnetic attraction for magnetic classification of as- fication of asteroids. It is generally accepted that aster- teroids. We modeled magnetic field generated by elec- oids are the parent bodies for most meteorites reaching tromagnets containing high permeability cores and the Earth [1]. Magnetic classification of meteorites connected with high permeability tubes. We use Finite indicates that the amount of iron in asteroids within Element Method Magnetics software written by David asteroid belt is efficiently detected by measurement of Meeker, 2004. magnetic susceptibility of asteroidal material [2, 3]. Magnetic navigation: Let us assume that a space- Presence of nearby magnetic source is enhanced by craft is located within the asteroid belt. Asteroids have any soft magnetic component, which in asteroidal ma- gravitational interactions orders of magnitude smaller terial is mostly iron and nickel compounds. Such mate- than planet Earth. Any orbiting spacecraft has very rial reaches magnetic susceptibility of 1 e-3 m^3/kg. low speed on its orbit allowing precise navigation and Even if diluted within the asteroid, the presence of maneuvering.
    [Show full text]
  • Origin of Reduced Magnetization and Domain Formation in Small
    www.nature.com/scientificreports OPEN Origin of reduced magnetization and domain formation in small magnetite nanoparticles Received: 03 January 2017 Zlatko Nedelkoski1, Demie Kepaptsoglou2, Leonardo Lari1, Tianlong Wen3,4, Ryan A. Booth3, Accepted: 07 March 2017 Samuel D. Oberdick3, Pedro L. Galindo5, Quentin M. Ramasse2, Richard F. L. Evans1, Published: 10 April 2017 Sara Majetich3 & Vlado K. Lazarov1 The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm. Magnetic nanoparticles (NPs) are expected to be single magnetic domain below a critical size, typically on the order of the domain wall width for the corresponding bulk material. Single domain particles should have the maximum magnetic moment per volume, which is desirable for their use in ferrofluids1,2, magnetic separation3, contrast agents4,5 for magnetic resonance imaging and magnetic hyperthermia6,7, all of which use iron oxide NPs. However, many researchers observe reduced magnetization, relative to that of the bulk. The reduction has been attributed to surface spin disorder8,9 or to variations in crystallinity, as in the case of low temperature aqueous preparation methods10. However, increasing crystallinity and reducing surface roughness does not necessarily solve this problem11,12. Indeed, in this work we demonstrate that even high quality magnetite NPs can have dra- matic differences in their magnetic properties.
    [Show full text]
  • 615-0300 (20-030) and 615-0305 (20-035) Electromagnet Written by Dr
    ©2012 - v 5/09 615-0300 (20-030) and 615-0305 (20-035) Electromagnet Written by Dr. P.G. Mattocks Introduction: Activities few inches above the surface. This compact electromagnet is able If conditions are right, sur- to lift 100 times its weight - up to 200 faces smooth, tray loaded and pounds (20-030) or 500 pounds (20- Demonstrate Holding Force 035), with only one or two 1 1/2 volt D A quick way to demonstrate holding hanging correctly, you can cell batteries as a power source! This is force is to connect batteries, place core carry over 200 pounds. due to precision machining of the flat and yoke together, and try to pull apart Reverse connections and confirm surfaces (core and yoke). Compare it to with your two hands. If your surfaces the same load can be carried. cranes that can lift derelict automobiles are flush and connections good, you Variations: Stand on a bathroom scale around a junk yard. These cranes use will not be able to separate the parts. underneath the magnet and pull electromagnets similar in principle to Now disconnect battery. Parts remove down on the yoke. (Take care the this one, although with higher power easily. yoke does not hit your head. Avoid requirements. This style of crane For a quantifiable demonstration, the in ropes!) The reading on scale is practical since it can be switched you will need: will decrease by amount of the force on and off remotely and loaded and • Weights between magnet and yoke. If you unloaded by one person.
    [Show full text]
  • Hot on the Trail of Residual Magnetism
    4 Products and technology A new way of testing current transformers Hot on the trail of residual magnetism Current transformers play an important role in Testing of protection current transformers (CTs) the protection of electrical power systems. They Conventional testing methods apply a signal to one side of the CT and read the resulting output signal on the other side. However, provide the protection relay with a current pro- these methods can be time-consuming and use a lot of equip- portional to the line current so that it can iden- ment. Sometimes they are not even feasible as very high currents tify abnormal conditions and operate according are required, e.g. for on-site testing of current transformers to its settings. The transformation of the current designed for transient behavior (TP, TPX, TPY, TPZ types). As these conventional methods have limitations, OMICRON has developed values from primary to secondary must be ac- a new way of testing CTs. curate during normal operation and especially during system fault conditions (when overcur- Modeling concept rents up to 30-times the nominal current are not This led to the development of the CT Analyzer – a test device using a revolutionary testing concept. The new concept of model- an exception). ing a current transformer allows for a detailed view of its design and physical behavior to be created using parameters measured during the test. It then compares the model with the relevant OMICRON Magazine | Volume 1 Issue 2 2010 Products and technology 5 specification to confirm the accuracy of the CT. The CT Analyzer Different test devices and methods are used to verify the per- is small, lightweight and provides fully automated test plans, formance of current transformers during their development, keeping testing times as short as possible.
    [Show full text]
  • Materials (Principles, Demagnetization Curves And
    Ferrite Magnets Principles Temperature vs. Demagnetization Characteristics 1. Operating Point 5 0.5 Right figure presents an example of moving state of operating point due to temperature varia- 4 tions. A-B shows demagnetization curve of Q6 material at 20°C. And A'-B' shows the curve of 0.4 Angle-stem point Q6 at 40°C. And 2 operating state are shown in operating line X-0 and Y-0. In X-0 operating state, operating point of magnet irreversibly changes along X-0 line holding constant tempera- 3 0.3 B (T) ture coefficient(0.19%/°C). However, in Y-0 operating state, where operating line is more B (kG) slanted, the operating point will move from B to B' and that remanence value will be equivalent 2 0.2 to the value of irreversible attenuation B"-B'. This difference will not be changed even when tem-perature returns to normal level. After exposed to irreversible demagnetization at low tem- 1 0.1 perature, the operating point moves to B'''on Y-0 line. 0 0 3 2 1 0 ‒H (kOe) 200 150 100 50 0 ‒H (kA/m) 2. Remanence Curve at Operating Point (X-0, Y-0) Temperature vs. Remanence Characteristics 5 0.5 Right figure presents variations of remanence value on operating line X-0 and Y-0 shown in above figure on another scale. It shows the irreversible demagnetization starts at low tempera- ture starts from point C. 4 0.4 This low-temperature demagnetization is affected by material or operating points (permeance coefficient).
    [Show full text]
  • 7 Magnetic Domain Walls
    7 Magnetic domain walls Poznań 2019 Maciej Urbaniak 7 Magnetic domain walls ● Domain walls in bulk materials cont. ● Domain walls in thin films ● Domain walls in 1D systems ● Domain wall motion Poznań 2019 Maciej Urbaniak Bloch versus Néel wall ● From previous lectures we know Bloch and Néel domain walls. ● Schematic view of the magnetic moments orientation of the Bloch wall in easy plane anisotropy sample ● The magnetic moments rotate gradually about the axis perpendicular to the wall Bloch wall – right or left handedness Chirality – the object cannot be mapped to its mirror image by rotations and translations alone Bloch type wall: The magnetic moments rotate gradually about the axis perpendicular to the wall N éel walls come in two handednesses too. Bloch versus Néel wall ● From previous lectures we know Bloch and Néel domain walls. ● To note is that when the Bloch wall in easy plane anisotropy sample crosses the surface of the sample the magnetic moments within the wall are not parallel to the surface ● Magnetic charges appear on the surface Bloch versus Néel wall ● From previous lectures we know Bloch and Néel domain walls. ● Schematic view of the Néel wall ● Magnetic moments within Néel wall rotate along direction parallel to the wall ● To note is that when the Néel wall in easy plane anisotropy sample crosses the surface of the sample the magnetic moments within the wall are parallel to the surface Bloch versus Néel wall ● The rotation of magnetic moments within the Néel wall creates volume magnetic charges. ● Assuming the following
    [Show full text]