Performance Metrics of Collective Coordinated Motion in Flocks Jorge L

Total Page:16

File Type:pdf, Size:1020Kb

Performance Metrics of Collective Coordinated Motion in Flocks Jorge L Performance Metrics of Collective Coordinated Motion in Flocks Jorge L. Zapotecatl1;2;3, Angelica´ Munoz-Mel˜ endez´ 2, and Carlos Gershenson3;4 1Posgrado en Ciencia e Ingenier´ıa de la Computacion,´ Universidad Nacional Autonoma´ de Mexico.´ 2Instituto Nacional de Astrof´ısica, Optica´ y Electronica´ 3Instituto de Investigaciones en Matematicas´ Aplicadas y en Sistemas, Universidad Nacional Autonoma´ de Mexico.´ 4 Centro de Ciencias de la Complejidad, UNAM, Mexico.´ email: [email protected], [email protected], [email protected] Downloaded from http://direct.mit.edu/isal/proceedings-pdf/alif2016/28/322/1904198/978-0-262-33936-0-ch054.pdf by guest on 25 September 2021 Abstract The measurement and evaluation of the collective perfor- mance of autonomous agents is an open issue (Navarro and Measurements of coordinated motion in flocks are necessary Mat´ıa, 2009). A lot of work remains to be done in the de- to evaluate their performance. In this work, a set of quantita- velopment of indicators that capture important aspects of the tive metrics to evaluate the performance of the spatial features exhibited by flocks are introduced and applied to the well- collective dynamics of groups of autonomous entities based, known boids of Reynolds. Our metrics are based on quanti- for instance, on the goal achievement, the formation of spa- tative indicators that have been used to evaluate fish schools. tial patterns, and the exploitation of resources. These indicators are revisited and extended as a set of three The tune of values for the achievement of coordinated new metrics that can be used to evaluate and design flocks. flocks is far from being trivial, because the parameters that Keywords. metrics, flock, behaviors, boids influence the behaviors of the members of flock are closely interrelated. Performance metrics are the criteria that deter- Introduction mine success in the behavior of a system. Therefore it is necessary to design objective performance metrics that al- An intriguing collective phenomenon of nature is caused low discern that flocks behave better. by animals moving as a coordinated unit, for example a In this work we propose new metrics in order to capture flock of birds or a fish school. This phenomenon has at- the global performance, in spatial terms, of the flocks such tracted interest in various scientific fields such as biology, that they can be used as a benchmark. Our metrics are based artificial life and artificial intelligence distributed, because in quantitative indicators that have been used to characterize the phenomenon suggests an intelligent organization that spatial features exhibited by a fish school: extension, polar- transcends the abilities of each individual (Camazine et al., ization and frequency of collisions (Huth and Wissel, 1992; 2003). Zheng et al., 2005). These measures are revisited and ex- The coordinated collective movement has important ap- tended in a set of three new measures: consistency in expan- plications such as virtual reality and computer animation. sion, consistency in polarization, and quality. The flocks models are often used to provide realistic-looking representations of flocks, schools or herds. For instance, Related Work they are used in the Half-Life video game to model the flying bird-like creatures or in the film Batman Returns to model A seminal work that aims at reproducing the flock phe- bat swarms and armies of penguins (Bajec and Heppner, nomenon is the model of coordinated collective motion pro- 2009). posed by Reynolds (Reynolds, 1987), where individual enti- In addition, the flocks models can be used for direct con- ties, generically known as boids, achieve realistic behaviors trol and stabilization of teams of simple Unmanned Ground by the application of a set of basic rules. This model is used Vehicles (UGV) or Micro Aerial Vehicles (MAV) in swarm in this work to applied our performance metrics. Therefore, robotics (Min and Wang, 2011; Saska et al., 2014). Also, we review in detail this model in the next section. they can be used in applications that require the coordinated In the area of biology, Huth and Wissel (Huth and Wissel, action of multiple autonomous individuals such as flying 1992) present a simulation of a school of fish. The behav- robots (drones) used in collective search, agricultural moni- ior of each fish are attraction, repulsion, parallel orientation toring and event surveillance (Vsrhelyi et al., 2014). and search. Polarization and extension are proposed as de- Other interesting applications where flock models has scriptive metrics of a school. The polarization reflects the been applied is the automatic programming of Internet degree of alignment of the agents headings, if fish belong- multi-channel radio stations and for optimization tasks ing to the school are oriented in similar directions a school (Iba´nez˜ et al., 2003; Cui and Shi, 2009). has a small polarization. The extension reflects the degree of cohesion that has a school, that is, how far the fishes are vectors “forward”(x axis), “side”(z axis) and “up”(y axis). between themselves. Where each boid has a local view of its environment called In the work of Huepe and Aldana (Huepe and Aldana, “area of perception”related to a steering behavior. The area 2008) are compared three simple models that reproduce of perception is determined by a radius r and a angle θ (field qualitatively the emergent swarming behavior of bird flocks of view) where only neighbors who are in the area of per- or fish schools, by using of the metrics: polarization, local ception are selected for calculating certain steering behavior density and nearest neighbor mean distance. While the po- (see Figure 1). larization (standard order parameters use in the flocks) be- have equivalently in all cases, the local density and near- est neighbor mean distance introduced provide a more de- tailed description that can clearly distinguish the properties of swarming behavior. In the work of Navarro and Mat´ıa (Navarro and Mat´ıa, Downloaded from http://direct.mit.edu/isal/proceedings-pdf/alif2016/28/322/1904198/978-0-262-33936-0-ch054.pdf by guest on 25 September 2021 2009) a set of metrics that measures the performance of collective movement of mobile robots is proposed and dis- cussed. The different metrics proposed cover several aspects of the characteristics of the collective movement including: those related to the area and shape of the group; the move- Figure 1: Figure (a) shows the local space of a boid. Figure (b) ment; and the positioning and orientation of its members. shows the area of perception of a boid. In the work of Bajec et al. (Bajec et al., 2007) it is pre- sented an artificial animal construction framework that has The set of boids bj perceived by the boid bi is denoted Pi been obtained as a generalization of the existing bird flock- and is calculated as follows: ing models. A set of metrics that can measure and judge boids the flocking behavior of a group of is presented and Step 1. Calculate distance, distance dij is determined from the metrics are used in a series of controlled experiments to the boid bi and boid bj, evaluate the flocking behavior of boids. dij = k ~pj(t) − ~pi(t)k (2) The boids model Step 2. Calculate angle, the angle θij is determined between This work is based on a model of coordinated collective mo- the vector “forward”of boid bi and the unit vector in the di- tion proposed by Reynolds in his classic article (Reynolds, rection of the position of the boid bj, 1987), which is inspired by the movement of flocks and schools. Entities belonging to a formation (birds, fish, etc.) " T # were called by Reynolds generically as boids. Each boid 180 ~ ~pj(t) − ~pi(t) θij = arccos fi(t) · (3) apply a simple set of steering behaviors such as cohesion, π k ~pj(t) − ~pi(t)k separation and alignment, that govern their movement. A flock is the result of the interaction of each boid with its Step 3. Calculate neighbors, determine if the distance dij neighbors. is less than the radius r of boid bi and angle θij is within the angle θ of boid b , then the boid b belongs to its local The set B of n boids bi involved in the flock is denoted i j by formula 1. neighborhood, B = fbi; i = 1; 2; : : : ; ng (1) Pi = fbj 2 B; 8bj : dij < r ^ θij < θ; j = 1; 2; : : : ; mg (4) Each boid bi has a position vector ~pi(t) and a velocity where m is the number of boids perceived by the boid bi on vector ~vi(t) that describe its motion in space in a time t. its radius of steering behavior. The force which adjusts the speed of the boid is typically an impulse generated by the same, so that impulse is limited The steering behaviors of a boid bi executed at time t in a scalar of maximum force denoted as fm. In addition, are cohesion, ~ci(t); separation, ~si(t); and alignment, ~ai(t) boids are restricted to a maximum speed expressed as sm. where the areas of perception associated with these steering This speed limit is imposed by a gating of the velocity vector behaviors are determined by the radii and angles rc, θc; rs, of the boid. In addition, the acceleration acquires a boid θs; and ra, θa respectively. In addition, the steering behav- also depends on the inertia of the body expressed as a scalar iors cohesion, separation and alignment are associated with quantity mass mb. the sets of boids bj perceived Ci, Si and Ai, respectively. The local space associated with each boid bi is described The calculation of neighbors boids belonging to said sets is ~ by fi(t), ~si(t) and ~ui(t) which refer respectively to the performed as in steps 1, 2 and 3 above.
Recommended publications
  • Simulation of Collective Motion of Self Propelled Particles in Homogeneous and Heterogeneous Medium
    IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 109 Simulation of Collective Motion of Self Propelled Particles in Homogeneous and Heterogeneous Medium Israr Ahmed†, Inayatullah Soomro††, Syed Baqer Shah†††, Hisamuddin Shaikh†††† SALU Khairpur Pakistan Abstract Large groups of animals moves very long distances and The concept of self-propelled particles is used to study the they cross rivers and forest [5]. Inspite of these facts, there collective motion of different organisms such as flocking of birds, has been limited research done on the effect of swimming of schools of fish or migrating of bacteria. The heterogeneous media on the collective behaviour of self- collective motion of self-propelled particles is investigated in the propelled particles [6]. Avoidance behaviour of the presence of obstacles and without obstacles. A comparison of the effects of interaction radius, speed and noise on the collective particle from the obstacle was simulated by the croft et al motion of self-propelled particles is conducted. It is found that in [7]. In this work measurement of effect was carried out the presence of obstacles, mean square displacement of the when a single particle collided with the static obstacles. It particles shows large fluctuation, whereas without obstacles was found that there are higher chances of collision of fluctuation is less. It is also shown that in the presence of the social interactions with the obstacles. This is due to the obstacles, an optimal noise, which maximizes the collective huge supposition and the occurrence of large parameter motion of the particles, exists values.
    [Show full text]
  • Individual Versus Collective Cognition in Social Insects
    Individual versus collective cognition in social insects Ofer Feinermanᴥ, Amos Kormanˠ ᴥ Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001, Rehovot, Israel. Email: [email protected] ˠ Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and University Paris Diderot, 75013, Paris, France. Email: [email protected] Abstract The concerted responses of eusocial insects to environmental stimuli are often referred to as collective cognition on the level of the colony.To achieve collective cognitiona group can draw on two different sources: individual cognitionand the connectivity between individuals.Computation in neural-networks, for example,is attributedmore tosophisticated communication schemes than to the complexity of individual neurons. The case of social insects, however, can be expected to differ. This is since individual insects are cognitively capable units that are often able to process information that is directly relevant at the level of the colony.Furthermore, involved communication patterns seem difficult to implement in a group of insects since these lack clear network structure.This review discusses links between the cognition of an individual insect and that of the colony. We provide examples for collective cognition whose sources span the full spectrum between amplification of individual insect cognition and emergent group-level processes. Introduction The individuals that make up a social insect colony are so tightly knit that they are often regarded as a single super-organism(Wilson and Hölldobler, 2009). This point of view seems to go far beyond a simple metaphor(Gillooly et al., 2010)and encompasses aspects of the colony that are analogous to cell differentiation(Emerson, 1939), metabolic rates(Hou et al., 2010; Waters et al., 2010), nutrient regulation(Behmer, 2009),thermoregulation(Jones, 2004; Starks et al., 2000), gas exchange(King et al., 2015), and more.
    [Show full text]
  • Behavioural Plasticity and the Transition to Order in Jackdaw Flocks
    ARTICLE https://doi.org/10.1038/s41467-019-13281-4 OPEN Behavioural plasticity and the transition to order in jackdaw flocks Hangjian Ling 1,2, Guillam E. Mclvor 3, Joseph Westley3, Kasper van der Vaart1, Richard T. Vaughan4, Alex Thornton 3* & Nicholas T. Ouellette 1* Collective behaviour is typically thought to arise from individuals following fixed interaction rules. The possibility that interaction rules may change under different circumstances has 1234567890():,; thus only rarely been investigated. Here we show that local interactions in flocks of wild jackdaws (Corvus monedula) vary drastically in different contexts, leading to distinct group- level properties. Jackdaws interact with a fixed number of neighbours (topological interac- tions) when traveling to roosts, but coordinate with neighbours based on spatial distance (metric interactions) during collective anti-predator mobbing events. Consequently, mobbing flocks exhibit a dramatic transition from disordered aggregations to ordered motion as group density increases, unlike transit flocks where order is independent of density. The relationship between group density and group order during this transition agrees well with a generic self- propelled particle model. Our results demonstrate plasticity in local interaction rules and have implications for both natural and artificial collective systems. 1 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA. 2 Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth,
    [Show full text]
  • Collective Motion from Local Attraction Daniel Strömbom
    Collective motion from local attraction Daniel Strömbom To cite this version: Daniel Strömbom. Collective motion from local attraction. Journal of Theoretical Biology, Elsevier, 2011, 283 (1), pp.145. 10.1016/j.jtbi.2011.05.019. hal-00719499 HAL Id: hal-00719499 https://hal.archives-ouvertes.fr/hal-00719499 Submitted on 20 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author’s Accepted Manuscript Collective motion from local attraction Daniel Strömbom PII: S0022-5193(11)00261-X DOI: doi:10.1016/j.jtbi.2011.05.019 Reference: YJTBI6483 To appear in: Journal of Theoretical Biology www.elsevier.com/locate/yjtbi Received date: 15 September 2010 Revised date: 4 May 2011 Accepted date: 9 May 2011 Cite this article as: Daniel Strömbom, Collective motion from local attraction, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2011.05.019 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form.
    [Show full text]
  • Inferring the Structure and Dynamics of Interactions in Schooling Fish
    Inferring the structure and dynamics of interactions in schooling fish Yael Katza, Kolbjørn Tunstrøma, Christos C. Ioannoua, Cristián Huepeb, and Iain D. Couzina,1 aDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; and b614 North Paulina Street, Chicago, IL 60622 Edited* by Simon A. Levin, Princeton University, Princeton, NJ, and approved June 28, 2011 (received for review May 12, 2011) Determining individual-level interactions that govern highly coor- Recent empirical studies (19–26) have collected large datasets dinated motion in animal groups or cellular aggregates has been a of freely interacting individuals in order to infer the rules under- long-standing challenge, central to understanding the mechanisms lying their emergent collective motion. Ballerini et al. (22) and and evolution of collective behavior. Numerous models have been Cavagna et al. (26) have used the spatial structure of starling flocks proposed, many of which display realistic-looking dynamics, but to infer that starlings use topological rather than metric interac- nonetheless rely on untested assumptions about how individuals tions and that information is transferred over large distances within integrate information to guide movement. Here we infer behavior- flocks in a scale-free manner. High-temporal-resolution data from al rules directly from experimental data. We begin by analyzing tra- several species have been analyzed by employing model-based jectories of golden shiners (Notemigonus crysoleucas) swimming approaches. Lukeman et al. (25) fit data on the spatial conurations in two-fish and three-fish shoals to map the mean effective forces of surf scoters to a zonal model and identified best-fit parameter as a function of fish positions and velocities.
    [Show full text]
  • Collective Turns in Jackdaw Flocks: Kinematics and Information Transfer
    ORE Open Research Exeter TITLE Collective turns in jackdaw flocks: kinematics and information transfer AUTHORS Ling, H; Mclvor, GE; Westley, J; et al. JOURNAL Journal of The Royal Society Interface DEPOSITED IN ORE 01 November 2019 This version available at http://hdl.handle.net/10871/39459 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Collective turns in jackdaw flocks Collective turns in jackdaw flocks: kinematics and information transfer Hangjian Ling1,4, Guillam E. Mclvor2, Joseph Westley2, Kasper van der Vaart1, Jennifer Yin1, Richard T. Vaughan3, Alex Thornton2*, Nicholas T. Ouellette1* 1Department of Civil and Environmental Engineering, Stanford University, Stanford, CA USA; 2Center for Ecology and Conservation, University of Exeter, Penryn, UK; 3School of Computing Science, Simon Fraser University, Burnaby, Canada 4Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA USA; Correspondence: Nicholas T. Ouellette, Email: [email protected] Alex Thornton, Email: [email protected] Abstract: The rapid, cohesive turns of bird flocks are one of the most vivid examples of collective behaviour in nature, and have attracted much research. 3D imaging techniques now allow us to characterise the kinematics of turning and their group-level consequences in precise detail. We measured the kinematics of flocks of wild jackdaws executing collective turns in two contexts: during transit to roosts and anti-predator mobbing. All flocks reduced their speed during turns, likely due to constraints on individual flight capability.
    [Show full text]
  • Algorithmic Requirements for Swarm Intelligence in Differently Coupled Collective Systems
    Chaos, Solitons & Fractals 50 (2013) 100–114 Contents lists available at SciVerse ScienceDirect Chaos, Solitons & Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena journal homepage: www.elsevier.com/locate/chaos Algorithmic requirements for swarm intelligence in differently coupled collective systems Jürgen Stradner a, Ronald Thenius a, Payam Zahadat a, Heiko Hamann a,b, Karl Crailsheim a, ⇑ Thomas Schmickl a, a Artificial Life Laboratory at the Department of Zoology, Karl-Franzens University Graz, Universitätsplatz 2, A-8010 Graz, Austria b Department of Computer Science, University of Paderborn, Zukunftsmeile 1, 33102 Paderborn, Germany article info abstract Article history: Swarm systems are based on intermediate connectivity between individuals and dynamic Available online 7 March 2013 neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryo- genesis). We demonstrate how such bio-inspired control paradigms bring their host sys- tems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments. Ó 2013 Elsevier Ltd.
    [Show full text]
  • Intermittent Collective Dynamics Emerge from Conflicting Imperatives in Sheep Herds
    Intermittent collective dynamics emerge from conflicting imperatives in sheep herds Francesco Ginellia,1,2, Fernando Peruanib,2, Marie-Helène Pillotc,d, Hugues Chatée,f, Guy Theraulazc,d, and Richard Bonc,d aPhysics Department and Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom; bLaboratoire J.A. Dieudonné, Université de Nice Sophia Antipolis, UMR CNRS 6621, 06108 Nice Cedex 02, France; cCentre de Recherches sur la Cognition Animale, UMR-CNRS 5169, Universit Paul Sabatier, 31062 Toulouse Cedex 9, France; dCNRS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse, France; eService de Physique de l’État Condensé, CNRS UMR 3680, Commissariat à l’énergie atomique et aux énergies alternatives (CEA)–Saclay, 91191 Gif-sur-Yvette, France; and fBeijing Computational Science Research Center, Beijing 100094, China Edited by Giorgio Parisi, University of Rome, Rome, Italy, and approved August 18, 2015 (received for review February 25, 2015) Among the many fascinating examples of collective behavior few individuals that propagates to the whole group. In many exhibited by animal groups, some species are known to alternate cases, the behavioral shift occurs without any perceived threat in slow group dispersion in space with rapid aggregation phe- the neighborhood, resulting in a spontaneous transition at the nomena induced by a sudden behavioral shift at the individual collective level that can be interpreted as a consequence of ran- level. We study this phenomenon quantitatively in large groups of dom individual decisions. Such alternating behavioral phases at grazing Merino sheep under controlled experimental conditions. the collective level have also been reported in refs.
    [Show full text]
  • Using Activity and Sociability to Characterize Collective Motion Rstb.Royalsocietypublishing.Org David J
    Downloaded from http://rstb.royalsocietypublishing.org/ on August 9, 2018 Using activity and sociability to characterize collective motion rstb.royalsocietypublishing.org David J. T. Sumpter1,†, Alex Szorkovszky1,†, Alexander Kotrschal2, Niclas Kolm2 and James E. Herbert-Read2 1Mathematics Department, Uppsala University, Uppsala, Sweden Review 2Zoology Department, Stockholm University, Stockholm, Sweden DJTS, 0000-0002-1436-9103; AS, 0000-0001-9331-3214; AK, 0000-0003-3473-1402; Cite this article: Sumpter DJT, Szorkovszky A, JEH-R, 0000-0003-0243-4518 Kotrschal A, Kolm N, Herbert-Read JE. 2018 Using activity and sociability to characterize A wide range of measurements can be made on the collective motion of collective motion. Phil. Trans. R. Soc. B 373: groups, and the movement of individuals within them. These include, but are not limited to: group size, polarization, speed, turning speed, 20170015. speed or directional correlations, and distances to near neighbours. From http://dx.doi.org/10.1098/rstb.2017.0015 an ecological and evolutionary perspective, we would like to know which of these measurements capture biologically meaningful aspects of an Accepted: 11 December 2017 animal’s behaviour and contribute to its survival chances. Previous simu- lation studies have emphasized two main factors shaping individuals’ behaviour in groups; attraction and alignment. Alignment responses One contribution of 16 to a theme issue appear to be important in transferring information between group members ‘Collective movement ecology’. and providing synergistic benefits to group members. Likewise, attraction to conspecifics is thought to provide benefits through, for example, selfish Subject Areas: herding. Here, we use a factor analysis on a wide range of simple measure- ments to identify two main axes of collective motion in guppies (Poecilia behaviour, ecology, evolution reticulata): (i) sociability, which corresponds to attraction (and to a lesser degree alignment) to neighbours, and (ii) activity, which combines Keywords: alignment with directed movement.
    [Show full text]
  • Collective Motion in Biological Systems Andrea Deutsch, Peter Friedl, Luigi Preziosi, Guy Theraulaz
    Collective motion in biological systems Andrea Deutsch, Peter Friedl, Luigi Preziosi, Guy Theraulaz To cite this version: Andrea Deutsch, Peter Friedl, Luigi Preziosi, Guy Theraulaz. Collective motion in biological systems. Interface Focus, Royal Society publishing, 2012, 2 (6), pp.689-692. 10.1098/rsfs.2012.0048. hal- 02325148 HAL Id: hal-02325148 https://hal.archives-ouvertes.fr/hal-02325148 Submitted on 5 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multi-scale analysis and modelling of collective migration in biological systems Andrea Deutsch1, Peter Friedl2,3,4, Luigi Preziosi5 & Guy Theraulaz6,7,8 1 Dept. Innovative Methods of Computing, Center for Information Services & High Performance Computing, Technische Universität Dresden, Dresden, Germany 2 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands, 3 Cancer Genomics Center, Utrecht, Netherlands 4 Department of Genitourinary Medicine, University of Texas MD Anderson Cancer Center, Houston, United States
    [Show full text]
  • Collective Cognition in Animal Groups
    Review Collective cognition in animal groups Iain D. Couzin Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA The remarkable collective action of organisms such as with mechanisms of decision-making within the brain swarming ants, schooling fish and flocking birds has [1,6]. Although many details differ, there is good reason long captivated the attention of artists, naturalists, phi- for increased communication between researchers inter- losophers and scientists. Despite a long history of scien- ested in collective animal behavior and those in cognitive tific investigation, only now are we beginning to science. decipher the relationship between individuals and group-level properties. This interdisciplinary effort is Collective motion beginning to reveal the underlying principles of collec- It is usually not possible to scale reliably from individual to tive decision-making in animal groups, demonstrating group behavior through verbal argument alone. Con- how social interactions, individual state, environmental sequently, considerable progress in revealing the prin- modification and processes of informational amplifica- ciples of collective behavior has been made using tion and decay can all play a part in tuning adaptive mathematical modeling techniques, such as computer response. It is proposed that important commonalities simulation (Box 1). Some of the earliest theoretical exist with the understanding of neuronal processes and approaches were inspired by particle physics [2,7]. These that much could be learned by considering collective introduced the influential concept of using equations to animal behavior in the framework of cognitive science. characterize individual movements and interactions (as ‘social forces’), the aim being to explore whether (and if so, Introduction how) individual behaviors can scale to the coherent collec- It is little wonder that the behavior of animal groups, tive motion exhibited by fish schools or bird flocks.
    [Show full text]
  • Analyzing Collective Motion with Machine Learning and Topology
    Analyzing collective motion with machine learning and topology Cite as: Chaos 29, 123125 (2019); https://doi.org/10.1063/1.5125493 Submitted: 23 August 2019 . Accepted: 22 November 2019 . Published Online: 18 December 2019 Dhananjay Bhaskar , Angelika Manhart , Jesse Milzman , John T. Nardini , Kathleen M. Storey , Chad M. Topaz , and Lori Ziegelmeier Chaos 29, 123125 (2019); https://doi.org/10.1063/1.5125493 29, 123125 © 2019 Author(s). Chaos ARTICLE scitation.org/journal/cha Analyzing collective motion with machine learning and topology Cite as: Chaos 29, 123125 (2019); doi: 10.1063/1.5125493 Submitted: 23 August 2019 · Accepted: 22 November 2019 · Published Online: 18 December 2019 View Online Export Citation CrossMark Dhananjay Bhaskar,1 Angelika Manhart,2 Jesse Milzman,3 John T. Nardini,4 Kathleen M. Storey,5 Chad M. Topaz,6 and Lori Ziegelmeier7,a) AFFILIATIONS 1Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA 2Department of Mathematics, University College London, London WC1E 6BT, United Kingdom 3Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA 4The Statistical and Applied Mathematical Sciences Institute (SAMSI), Durham, North Carolina 27709, USA 5Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48105, USA 6Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts 01267, USA 7Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, Minnesota 55105, USA a)Electronic mail: [email protected] ABSTRACT We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as ocking and milling.
    [Show full text]