Luna Hathor International Deep Drilling Lunar Mission Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Low-Energy Lunar Trajectory Design
LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 ii DEEP SPACE COMMUNICATIONS AND NAVIGATION SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Titles in this Series Radiometric Tracking Techniques for Deep-Space Navigation Catherine L. Thornton and James S. Border Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation Theodore D. Moyer Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communication Marvin K. Simon Large Antennas of the Deep Space Network William A. Imbriale Antenna Arraying Techniques in the Deep Space Network David H. Rogstad, Alexander Mileant, and Timothy T. Pham Radio Occultations Using Earth Satellites: A Wave Theory Treatment William G. Melbourne Deep Space Optical Communications Hamid Hemmati, Editor Spaceborne Antennas for Planetary Exploration William A. Imbriale, Editor Autonomous Software-Defined Radio Receivers for Deep Space Applications Jon Hamkins and Marvin K. Simon, Editors Low-Noise Systems in the Deep Space Network Macgregor S. Reid, Editor Coupled-Oscillator Based Active-Array Antennas Ronald J. Pogorzelski and Apostolos Georgiadis Low-Energy Lunar Trajectory Design Jeffrey S. Parker and Rodney L. Anderson LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 iv Low-Energy Lunar Trajectory Design July 2013 Jeffrey Parker: I dedicate the majority of this book to my wife Jen, my best friend and greatest support throughout the development of this book and always. -
An Evolved International Lunar Decade Global Exploration Roadmap
Lunar Exploration Analysis Group (2015) 2016.pdf An Evolved International Lunar Decade Global Exploration Roadmap. David Dunlop. Author1 and Kim Hold- er. Author2, 1 National Space Society, 410 Ashland Ave, Green Bay Wisconsin, [email protected], 2 National Space Society (Patzcuaro, Michoacan, Mexico, Kim [email protected]). Introduction: Since 2007 an International 1 The 2013 GER edition did not reflect the Chinese Space Exploration Coordination Group (ISECG) of 14 government lunar mission series beginning with the of the largest national space agencies has met to look at 2013 Chang’e III successful landing, and reflecting the potential of collaborative planning and coordina- Chang’e IV (now scheduled for 2020 targeting the tion of their national space exploration activities. lunar farside, Change’e V (sample return now sched- While these meetings have generally been closed door uled for 2017) with a Change’6 Mission indicated as a back-up to the sample return mission. (3) events a 2013 edition Global Exploration Roadmap 2 The GER did not reflect any of the Google Lunar X- (GER) was produced (signed off) by 12 of the 14 coun- Prize Missions. Several teams such as Astrobotic and tries reflecting their projected space program activities Moon-X and Team Space IL have received significant in the categories: Low Earth Orbit, Lunar Vicinity, financial support, have developed flight hardware, and Moon, Mars, Asteroids, and Transportation.(1) This while slipping behind the earlier 2015 deadline are GER is a formidable measure of collaborative efforts planning missions to the Moon perhaps succeeding in and spirits and a reflection of significant global coop- 2016 or when more affordable reusable launchers be- eration. -
Gnc 2021 Abstract Book
GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering -
ESA Strategy for Science at the Moon
ESA UNCLASSIFIED - Releasable to the Public ESA Strategy for Science at the Moon ESA UNCLASSIFIED - Releasable to the Public EXECUTIVE SUMMARY A new era of space exploration is beginning, with multiple international and private sector actors engaged and with the Moon as its cornerstone. This renaissance in lunar exploration will offer new opportunities for science across a multitude of disciplines from planetary geology to astronomy and astrobiology whilst preparing the knowledge humanity will need to explore further into the Solar System. Recent missions and new analyses of samples retrieved during Apollo have transformed our understanding of the Moon and the science that can be performed there. We now understand the scientific importance of further exploration of the Moon to understand the origins and evolution of Earth and the cosmic context of life’s emergence on Earth and our future in space. ESA’s priorities for scientific activities at the Moon in the next ten years are: • Analysis of new and diverse samples from the Moon. • Detection and characterisation of polar water ice and other lunar volatiles. • Deployment of geophysical instruments and the build up a global geophysical network. • Identification and characterisation of potential resources for future exploration. • Deployment long wavelength radio astronomy receivers on the lunar far side. • Characterisation of the dynamic dust, charge and plasma environment. • Characterisation of biological sensitivity to the lunar environment. ESA UNCLASSIFIED - Releasable to the Public -
Astronomy News KW RASC FRIDAY JANUARY 8 2021
Astronomy News KW RASC FRIDAY JANUARY 8 2021 JIM FAIRLES What to expect for spaceflight and astronomy in 2021 https://astronomy.com/news/2021/01/what-to-expect-for- spaceflight-and-astronomy-in-2021 By Corey S. Powell | Published: Monday, January 4, 2021 Whatever craziness may be happening on Earth, the coming year promises to be a spectacular one across the solar system. 2020 - It was the worst of times, it was the best of times. First landing on the lunar farside, two impressive successes in gathering samples from asteroids, the first new pieces of the Moon brought home in 44 years, close-up explorations of the Sun, and major advances in low-cost reusable rockets. First Visit to Jupiter's Trojan Asteroids First Visit to Jupiter's Trojan Asteroids In October, NASA is set to launch the Lucy spacecraft. Over its 12-year primary mission, Lucy will visit eight different asteroids. One target lies in the asteroid belt. The other seven are so-called Trojan asteroids that share an orbit with Jupiter, trapped in points of stability 60 degrees ahead of or behind the planet as it goes around the sun. These objects have been trapped in their locations for billions of years, probably since the time of the formation of the solar system. They contain preserved samples of water-rich and carbon-rich material in the outer solar system; some of that material formed Jupiter, while other bits moved inward to contribute to Earth's life-sustaining composition. As a whimsical aside: When meteorites strike carbon-rich asteroids, they create tiny carbon crystals. -
50. Obletnica Pristanka Na Luni in Pomen Osvajanja Vesolja Za Geodezijo 50Th Anniversary of the Moon Landing and the Importance
GEODETSKI VESTNIK | 63/4 | 50. OBLETNICA PRISTANKA 50TH ANNIVERSARY OF NA LUNI IN POMEN THE MOON LANDING AND OSVAJANJA VESOLJA ZA THE IMPORTANCE OF GEODEZIJO CONQUERING SPACE FOR GEODESY Sandi Berk STROKOVNE RAZPRAVE | PROFESSIONAL DISCUSSIONS RAZPRAVE STROKOVNE 1 UVOD Letos mineva petdeset let od prvega obiska človeka na edini Zemljini luni – Mesecu (v nadaljevanju kar: Luna). Ta »majhen korak za človeka, a velikanski skok za človeštvo« je bil storjen 20. julija 1969, ko sta Neil Armstrong in Edwin Aldrin v lunarnem modulu Eagle (tj. Orel) pristala poleg Malega zahodnega kraterja v Morju tišine (slika 1). Okrogla obletnica je priložnost, da se ozremo nazaj in osvežimo dogod- ke iz pionirskih časov osvajanja vesolja. Hkrati lahko osvetlimo pomen takratnih podvigov ter njihove učinke na tehnološki razvoj in tudi napredek geodezije. Slika 1: Armstrongova fotografija Aldrina ob nameščenem seizmografu; nad njim je reflektor za lasersko merjenje oddaljenosti od Zemlje, desno zgoraj pa je lunarni modul Eagle (vir: NASA, 2019). | 589 | | 63/4 | GEODETSKI VESTNIK Kje se sploh prične vesolje – kako visoko je treba poleteti? Mejo med Zemljino atmosfero in vesoljskim prostorom (angl. outer space) imenujemo Kármánova ločnica in je približno sto kilometrov nad površjem Zemlje. Nad to višino za letenje ne veljajo več zakoni aerodinamike, ampak je mogoče zgolj še letenje po zakonih balistike, torej na raketni pogon. Pomembna je tudi v pravnem smislu, saj se tu konča zračni prostor držav in začne veljati mednarodno vesoljsko pravo. Kot vemo, letijo potniška letala na višini približno deset kilometrov. Nedavni rekordni polet z jadralnim letalom je dosegel višino 23 kilometrov nad morjem, vendar s pomočjo stratosferskih zavetrnih valov, ki nastajajo zaradi izredno močnih zračnih tokov med visokimi gorskimi vrhovi Andov (Ebbesen Jensen, 2019). -
350 International Atlas of Lunar Exploration 8 January 1973
:UP/3-PAGINATION/IAW-PROOFS/3B2/978«52181«5(M.3D 350 [7428] 19.8.20073:28PM 350 International Atlas of Lunar Exploration 8 January 1973: Luna 21 and Lunokhod 2 (Soviet Union) The 4850 kg Luna 21 spacecraft was launched from Baikonur at 06:56 UT on a Proton booster, placed in a low Earth parking orbit and then put on a lunar trajec tory. Power problems required that the Lunokhod solar panel be opened in flight to augment power, and stowed again for the trajectory correction and orbit insertion burns and for landing. On 12 January Luna 21 entered a 90 km by 100 km lunar orbit inclined 60° to the equator. After a day in orbit the low point was reduced to 16 km, and on 15 January after 40 orbits the vehicle braked and dropped to just 750 m above the surface. Then the main thrusters slowed the descent, and at :UP/3-PAGINATION/IAW-PROOFS/3B2/978«52181«5(M.3D 351 [7428] 19.8.20073:28PM Chronological sequence of missions and events 351 22 m a set of secondary thrusters took over until the After landing, Lunokhod 2 surveyed its surround spacecraft was only 1.5 meters high, when the thrusters ings. A rock partly blocked the west-facing ramp so the were shut off. Landing time was 23:35 UT. rover was driven east across a shallow crater, leaving the The site was in Le Monnier crater on the eastern edge lander at 01:14 UT on 16 January. It rested 30 m from of Mare Serenitatis, 180 km north of the Apollo 17 land the descent stage to recharge its batteries until 18 ing site, at 25.85° N, 30.45° E (Figure 327A). -
February 2022
FORECAST OF UPCOMING ANNIVERSARIES -- FEBRUARY 2022 116 Years Ago – 1902 February 4: Charles Lindbergh’s birthday. 90 Years Ago – 1932 February 19: Joseph Kerwin's birthday. 60 Years Ago – 1962 February 8: Tiros 4 launched by Thor Delta, 7:43 a.m., EST, Cape Canaveral, Fla. February 20: Mercury Atlas 6 (MA-6), Friendship 7 launched, with astronaut John H. Glenn, 9:47:39 a.m., first American to orbit the earth, Cape Canaveral, Fla. February 27: Discoverer 38 (Corona Mission 9030) launched by Thor, Vandenberg AFB. The last Discoverer named Corona mission. 55 Years Ago – 1967 February 4: Lunar Orbiter 3 launched by Atlas Agena, 8:17 p.m., EST, Cape Canaveral, Fla. February 8: Diademe 1 launched by Diamant A, Hammaguir, Algeria, French satellite. February 15: Diademe 2 launched by Diamant A, Hammaguir, Algeria, French satellite. 50 Years Ago – 1972 February 14: USSR launches Luna 20 (Lunik 20) at 03:27:59 UTC by Proton K from Baikonur which soft lands on the Moon four days later. A rotary-percussion drill retrieved samples from the surface which were returned to Earth by capsule on February 25. 45 Years Ago -1977 February 7: USSR launches Soyuz-24 from Baikonur. Cosmonauts: Viktor V.Gorbatko and Yuri N.Glazkov. Ferry flight to Salyut-5 space station. February 18: Enterprise, the first space shuttle orbiter, was flight tested at Dryden Flight Research Center. 40 Years Ago – 1982 February 25: Westar IV launched by Delta, 7:04 p.m., EST, Cape Canaveral, Fla. 35 Years Ago – 1987 February 5: Soyuz TM-2 launched from Baikonur, 2138 Moscow time, Yuri V. -
Global Exploration Roadmap
The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System. -
The Soviet Space Program
C05500088 TOP eEGRET iuf 3EEA~ NIE 11-1-71 THE SOVIET SPACE PROGRAM Declassified Under Authority of the lnteragency Security Classification Appeals Panel, E.O. 13526, sec. 5.3(b)(3) ISCAP Appeal No. 2011 -003, document 2 Declassification date: November 23, 2020 ifOP GEEAE:r C05500088 1'9P SloGRET CONTENTS Page THE PROBLEM ... 1 SUMMARY OF KEY JUDGMENTS l DISCUSSION 5 I. SOV.IET SPACE ACTIVITY DURING TfIE PAST TWO YEARS . 5 II. POLITICAL AND ECONOMIC FACTORS AFFECTING FUTURE PROSPECTS . 6 A. General ............................................. 6 B. Organization and Management . ............... 6 C. Economics .. .. .. .. .. .. .. .. .. .. .. ...... .. 8 III. SCIENTIFIC AND TECHNICAL FACTORS ... 9 A. General .. .. .. .. .. 9 B. Launch Vehicles . 9 C. High-Energy Propellants .. .. .. .. .. .. .. .. .. 11 D. Manned Spacecraft . 12 E. Life Support Systems . .. .. .. .. .. .. .. .. 15 F. Non-Nuclear Power Sources for Spacecraft . 16 G. Nuclear Power and Propulsion ..... 16 Te>P M:EW TCS 2032-71 IOP SECl<ET" C05500088 TOP SECRGJ:. IOP SECREI Page H. Communications Systems for Space Operations . 16 I. Command and Control for Space Operations . 17 IV. FUTURE PROSPECTS ....................................... 18 A. General ............... ... ···•· ................. ····· ... 18 B. Manned Space Station . 19 C. Planetary Exploration . ........ 19 D. Unmanned Lunar Exploration ..... 21 E. Manned Lunar Landfog ... 21 F. Applied Satellites ......... 22 G. Scientific Satellites ........................................ 24 V. INTERNATIONAL SPACE COOPERATION ............. 24 A. USSR-European Nations .................................... 24 B. USSR-United States 25 ANNEX A. SOVIET SPACE ACTIVITY ANNEX B. SOVIET SPACE LAUNCH VEHICLES ANNEX C. SOVIET CHRONOLOGICAL SPACE LOG FOR THE PERIOD 24 June 1969 Through 27 June 1971 TCS 2032-71 IOP SLClt~ 70P SECRE1- C05500088 TOP SEGR:R THE SOVIET SPACE PROGRAM THE PROBLEM To estimate Soviet capabilities and probable accomplishments in space over the next 5 to 10 years.' SUMMARY OF KEY JUDGMENTS A. -
Spacecraft Deliberately Crashed on the Lunar Surface
A Summary of Human History on the Moon Only One of These Footprints is Protected The narrative of human history on the Moon represents the dawn of our evolution into a spacefaring species. The landing sites - hard, soft and crewed - are the ultimate example of universal human heritage; a true memorial to human ingenuity and accomplishment. They mark humankind’s greatest technological achievements, and they are the first archaeological sites with human activity that are not on Earth. We believe our cultural heritage in outer space, including our first Moonprints, deserves to be protected the same way we protect our first bipedal footsteps in Laetoli, Tanzania. Credit: John Reader/Science Photo Library Luna 2 is the first human-made object to impact our Moon. 2 September 1959: First Human Object Impacts the Moon On 12 September 1959, a rocket launched from Earth carrying a 390 kg spacecraft headed to the Moon. Luna 2 flew through space for more than 30 hours before releasing a bright orange cloud of sodium gas which both allowed scientists to track the spacecraft and provided data on the behavior of gas in space. On 14 September 1959, Luna 2 crash-landed on the Moon, as did part of the rocket that carried the spacecraft there. These were the first items humans placed on an extraterrestrial surface. Ever. Luna 2 carried a sphere, like the one pictured here, covered with medallions stamped with the emblem of the Soviet Union and the year. When Luna 2 impacted the Moon, the sphere was ejected and the medallions were scattered across the lunar Credit: Patrick Pelletier surface where they remain, undisturbed, to this day. -
Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.