High Dynamic Range Display and Projection Systems

Total Page:16

File Type:pdf, Size:1020Kb

High Dynamic Range Display and Projection Systems High Dynamic Range Display and Projection Systems by Helge Seetzen A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Interdisciplinary Studies) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2009 © Helge Seetzen, 2009 ABSTRACT The human visual system can perceive five orders of magnitude of simultaneous dynamic range of luminance values. Recent advances in image capture and processing have made it possible to create video content at this level of dynamic range but conventional displays are unable show this rich content. Modern display and projection systems cannot deliver more than three or four orders of dynamic range and are usually limited to lower luminance values than those found in real world environments. This dissertation describes high dynamic range display and projection systems which resolve this bottleneck in the video pipeline and deliver luminance ranges to the limit of human perception. The design of these systems is based on the concept of dual modulation which combines several lower dynamic range image modulation components to achieve higher dynamic range. An overview of relevant perceptual mechanisms, viewer preference with respect to higher dynamic range images, and perceptual validation studies are discussed in addition to several implementation examples of dual modulation systems. ii TABLE OF CONTENTS ABSTRACT ........................................................................................................................................ ii TABLE OF CONTENTS ...................................................................................................................... iii LIST OF TABLES ................................................................................................................................ v LIST OF FIGURES ............................................................................................................................. vi ABBREVIATIONS ............................................................................................................................ viii ACKNOWLEDGEMENTS ................................................................................................................... x DEDICATION .................................................................................................................................... xi 1 Introduction ............................................................................................................................ 1 1.1 State of the Art ................................................................................................................ 2 1.2 Contributions ................................................................................................................... 8 2 Basic Imaging Concepts ......................................................................................................... 11 2.1 Dynamic Range .............................................................................................................. 12 2.2 Contrast ......................................................................................................................... 13 2.3 Colour Gamut ................................................................................................................ 15 2.4 Amplitude Resolution .................................................................................................... 20 3 The Human Visual System ..................................................................................................... 22 3.1 Dynamic Range .............................................................................................................. 23 3.2 Local Contrast Perception ............................................................................................. 24 3.3 Just Noticeable Difference Steps ................................................................................... 27 3.4 Colour Perception ......................................................................................................... 29 4 Viewer Preference ................................................................................................................. 32 4.1 Experimental Design ..................................................................................................... 35 4.1.1 Luminance & Contrast Preference ........................................................................ 36 4.1.2 Contrast Preference .............................................................................................. 38 4.1.3 Amplitude Resolution Preference ......................................................................... 39 4.2 Experimental Results ..................................................................................................... 42 4.2.1 Luminance & Contrast Preference ........................................................................ 43 4.2.2 Contrast Preference .............................................................................................. 46 5 New Goals ............................................................................................................................. 50 iii 6 Dual Modulation Display Technology ................................................................................... 55 6.1 Basic Dual Modulation Displays .................................................................................... 56 6.1.1 Video Processing Algorithm for Basic Dual Modulation Displays ......................... 62 6.1.2 Performance and Limitations of Basic Dual Modulation Displays ........................ 68 6.2 Advanced Dual Modulation Displays............................................................................. 71 6.2.1 Video Processing Algorithm for Advanced Dual Modulation Displays.................. 75 6.2.2 Psychophysics Based Design of Advanced Dual Modulation Displays .................. 82 6.2.3 Performance and Limitations of Advanced Dual Modulation Displays ................. 87 7 Dual Modulation Projection Technology .............................................................................. 91 7.1 Basic Dual Modulation Projection Systems ................................................................... 92 7.1.1 Video Processing Algorithm for Basic Dual Modulation Projection Systems ........ 97 7.1.2 Performance and Limitations of Basic Dual Modulation Projection Systems ....... 99 7.2 Distributed Dual Modulation Projection Systems ....................................................... 102 7.2.1 System Architecture of Distributed Dual Modulation Projection Systems ......... 104 7.2.2 Calibration and Setup of Distributed Dual Modulation Projection Systems ....... 109 7.2.3 Video Processing for Distributed Dual Modulation Projection Systems ............. 116 7.2.4 Optimized Data Architecture for Distributed Dual Modulation Projection Systems ............................................................................................................................. 120 7.2.5 Performance and Limitations of Distributed Dual Modulation Projection Systems . ............................................................................................................................. 123 7.3 Active Screen Dual Modulation Projection Systems ................................................... 130 7.3.1 System Architecture for Active Screen Dual Modulation Projection Systems .... 132 7.3.2 Performance and Limitations of Active Screen Dual Modulation Projection Systems ............................................................................................................................. 137 8 Dual Modulation System Benefits ....................................................................................... 143 8.1 Contrast, Luminance and Colour ................................................................................. 144 8.2 Amplitude Resolution .................................................................................................. 146 8.3 Energy Saving .............................................................................................................. 148 8.4 Viewer Experience ....................................................................................................... 151 9 Conclusions ......................................................................................................................... 154 BIBLIOGRAPHY ............................................................................................................................. 156 PATENT REFERENCES .................................................................................................................. 163 iv LIST OF TABLES Table 1: Fit parameters for Figure 11. ........................................................................................... 45 Table 2: JND steps and thresholds per ring image luminance. ..................................................... 49 v LIST OF FIGURES Figure 1: ITU‐R Recommendation BT.709 reference primaries shown in the CIE 1931 xy colour space. ............................................................................................................................................ 16 Figure 2: Illustration of limitations of area comparison for colour gamuts .................................. 18 Figure 3: ITU‐R Recommendation BT.709 reference primaries and white point shown in the perceptually more uniform u’v’ colour
Recommended publications
  • Ultra HD Playout & Delivery
    Ultra HD Playout & Delivery SOLUTION BRIEF The next major advancement in television has arrived: Ultra HD. By 2020 more than 40 million consumers around the world are projected to be watching close to 250 linear UHD channels, a figure that doesn’t include VOD (video-on-demand) or OTT (over-the-top) UHD services. A complete UHD playout and delivery solution from Harmonic will help you to meet that demand. 4K UHD delivers a screen resolution four times that of 1080p60. Not to be confused with the 4K digital cinema format, a professional production and cinema standard with a resolution of 4096 x 2160, UHD is a broadcast and OTT standard with a video resolution of 3840 x 2160 pixels at 24/30 fps and 8-bit color sampling. Second-generation UHD specifications will reach a frame rate of 50/60 fps at 10 bits. When combined with advanced technologies such as high dynamic range (HDR) and wide color gamut (WCG), the home viewing experience will be unlike anything previously available. The expected demand for UHD content will include all types of programming, from VOD movie channels to live global sporting events such as the World Cup and Olympics. UHD-native channel deployments are already on the rise, including the first linear UHD channel in North America, NASA TV UHD, launched in 2015 via a partnership between Harmonic and NASA’s Marshall Space Flight Center. The channel highlights incredible imagery from the U.S. space program using an end-to-end UHD playout, encoding and delivery solution from Harmonic. The Harmonic UHD solution incorporates the latest developments in IP networking and compression technology, including HEVC (High- Efficiency Video Coding) signal transport and HDR enhancement.
    [Show full text]
  • JPEG-HDR: a Backwards-Compatible, High Dynamic Range Extension to JPEG
    JPEG-HDR: A Backwards-Compatible, High Dynamic Range Extension to JPEG Greg Ward Maryann Simmons BrightSide Technologies Walt Disney Feature Animation Abstract What we really need for HDR digital imaging is a compact The transition from traditional 24-bit RGB to high dynamic range representation that looks and displays like an output-referred (HDR) images is hindered by excessively large file formats with JPEG, but holds the extra information needed to enable it as a no backwards compatibility. In this paper, we demonstrate a scene-referred standard. The next generation of HDR cameras simple approach to HDR encoding that parallels the evolution of will then be able to write to this format without fear that the color television from its grayscale beginnings. A tone-mapped software on the receiving end won’t know what to do with it. version of each HDR original is accompanied by restorative Conventional image manipulation and display software will see information carried in a subband of a standard output-referred only the tone-mapped version of the image, gaining some benefit image. This subband contains a compressed ratio image, which from the HDR capture due to its better exposure. HDR-enabled when multiplied by the tone-mapped foreground, recovers the software will have full access to the original dynamic range HDR original. The tone-mapped image data is also compressed, recorded by the camera, permitting large exposure shifts and and the composite is delivered in a standard JPEG wrapper. To contrast manipulation during image editing in an extended color naïve software, the image looks like any other, and displays as a gamut.
    [Show full text]
  • Photometric Image Processing for High Dynamic Range Displays
    Photometric Image Processing for High Dynamic Range Displays by Matthew Trentacoste B.Sc., Carnegie Mellon University, 2003 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in The Faculty of Graduate Studies (Computer Science) The University Of British Columbia January, 2006 © Matthew Trentacoste 2006 ii Abstract Many real-world scenes contain a dynamic range that exceeds conventional display tech- nology by several orders of magnitude. Through the combination of several existing technologies, new high dynamic range displays, capable of reproducing a range of in- tensities much closer to that of real environments, have been constructed. These benefits come at the cost of more optically complex devices; involving two image modulators, controlled in unison, to display images. We present several methods of rendering images to this new class of devices for reproducing photometrically accurate images. We discuss the process of calibrating a display, matching the response of the device with our ideal model. We then derive series of methods for efficiently displaying images, optimized for different criteria and evaluate them in a perceptual framework. iii Contents Abstract ...................................... ii Contents ...................................... iii List of Tables .................................... vi List of Figures ................................... vii Acknowledgements ................................ ix 1 Introduction .................................. 1 1.1 Image Processing
    [Show full text]
  • Senior Tech Tuesday 11 Iphone Camera App Tour
    More Info: Links.SeniorTechClub.com/Tuesdays Welcome to Senior Tech Tuesday Live: 1/19/2021 Photography Series Tour of the Camera App Don Frederiksen Our Tuesday Focus ➢A Tour of the Camera App - Getting Beyond Point & Shoot ➢Selfies ➢Flash ➢Zoom ➢HDR is Good ➢What is a Live Photo ➢Focus & Exposure ➢Filters ➢Better iPhone Photography Tip ➢What’s Next www.SeniorTechClub.com Zoom Setup Zoom Speaker View Computer iPad or laptop Laptop www.SeniorTechClub.com Our Learning Tools ◦ Zoom Video Platform ◦ Slides – Downloadable from class page ◦ Demonstrations ◦ Your Questions ◦ “Hey Don” or Chat ◦ Email: [email protected] ◦ Online Class Page at: Links.SeniorTechClub.com/STT11 ◦ Tuesdays Page for Future Topics Links.SeniorTechClub.com/tuesdays www.SeniorTechClub.com Our Class Page Find our class page at: ◦ Links.SeniorTechClub.com/STT11 ◦ Bottom of the Tuesday page Purpose of the Class Page ◦ Relevant Information ◦ Fill in gaps from the online session ◦ Participate w/o being online www.SeniorTechClub.com Tour of our Class Page Slide Deck Video Archive Links & Resources Recipes & Nuggets www.SeniorTechClub.com A Tour of the Camera App Poll www.SeniorTechClub.com A Tour of the Camera App - Classic www.SeniorTechClub.com A Tour of the Camera App - New www.SeniorTechClub.com Switch Camera - Selfie Reminder: Long Press Shortcut Zoom Two kinds of zoom on iPhones Optical Zoom via a Lens Zoom Digital Zoom via a Pinch Better to zoom with your feet then digital Zoom Digital Zoom – Pinch Screen in or out Optical ◦ If your iPhone has more than one lens, tap: ◦ .5x or 1x or 2x (varies by model) Flash Focus & Exposure HDR Photos High Dynamic Range iPhone takes multiple photos to balance shadows and highlights.
    [Show full text]
  • JPEG Compatible Coding of High Dynamic Range Imagery Using Tone Mapping Operators
    JPEG Compatible Coding of High Dynamic Range Imagery using Tone Mapping Operators Min Chen1, Guoping Qiu1, Zhibo Chen2 and Charles Wang2 1School of Computer Science, The University of Nottingham, UK 2Thomson Broadband R&D (Beijing) Co., Ltd, China Abstract. In this paper, we introduce a new method for HDR imaging remain. For example, to display HDR compressing high dynamic range (HDR) imageries. Our images in conventional CRT or print HDR image on method exploits the fact that tone mapping is a necessary paper, the dynamic range of the image has to be operation for displaying HDR images on low dynamic compressed or the HDR image has to be tone mapped. range (LDR) reproduction media and seamlessly Even though there has been several tone mapping integrates tone mapping with a well-established image methods in the literature [3 - 12], non so far can compression standard to produce a HDR image universally produce satisfactorily results. Another huge compression technique that is backward compatible with challenge is efficient storage of HDR image. Compared established standards. We present a method to handle with conventional 24-bit/pixel images, HDR image is 96 color information so that HDR image can be gracefully bits/pixel and data is stored as 32-bit floating-point reconstructed from the tone mapped LDR image and numbers instead of 8-bit integer numbers. The data rate extra information stored with it. We present experimental using lossless coding, e.g, in OpenEXR [15], will be too results to demonstrate that the proposed technique works high especially when it comes to HDR video.
    [Show full text]
  • LIVE 15 Better Iphone Photos – Beyond Point
    Welcome to Senior Tech Club Please Stand By! LIVE! We will begin at With Don Frederiksen 10 AM CDT Welcome to Senior Tech Club LIVE! With Don Frederiksen www.SeniorTechClub.com Today’s LIVE! Focus ➢The iPhone has a Great Camera ➢Getting Beyond Point & Click ➢Rule of Thirds for Composition ➢HDR is Good ➢What is a Live Photo ➢Video Mode ➢Pano ➢What’s Next Questions: Text to: 612-930-2226 or YouTube Chat Housekeeping & Rules ➢Pretend that we are sitting around the kitchen table. ➢I Cannot See You!! ➢I Cannot Hear You!! ➢Questions & Comments ➢Chat at the YouTube Site ➢Send me a text – 612-930-2226 ➢Follow-up Question Email: [email protected] Questions: Text to: 612-930-2226 or YouTube Chat The iPhone puts a Good Camera in your pocket Questions: Text to: 612-930-2226 or YouTube Chat The iPhone puts a Good Camera in your pocket For Inspiration: Ippawards.com/gallery Questions: Text to: 612-930-2226 or YouTube Chat Typical iPhone Photographer Actions: 1. Tap Camera icon 2. Tap Shutter Questions: Text to: 612-930-2226 or YouTube Chat The iPhone puts a Good Camera in your pocket Let’s Use it to the Max Questions: Text to: 612-930-2226 or YouTube Chat The Camera App Questions: Text to: 612-930-2226 or YouTube Chat Rule of Thirds Questions: Text to: 612-930-2226 or YouTube Chat Rule of Thirds Google Search of Photography Rule of Thirds Images Questions: Text to: 612-930-2226 or YouTube Chat iPhone Grid Support Questions: Text to: 612-930-2226 or YouTube Chat Turn on the Grid Launch the Settings app.
    [Show full text]
  • High Dynamic Range Video
    High Dynamic Range Video Karol Myszkowski, Rafał Mantiuk, Grzegorz Krawczyk Contents 1 Introduction 5 1.1 Low vs. High Dynamic Range Imaging . 5 1.2 Device- and Scene-referred Image Representations . ...... 7 1.3 HDRRevolution ............................ 9 1.4 OrganizationoftheBook . 10 1.4.1 WhyHDRVideo? ....................... 11 1.4.2 ChapterOverview ....................... 12 2 Representation of an HDR Image 13 2.1 Light................................... 13 2.2 Color .................................. 15 2.3 DynamicRange............................. 18 3 HDR Image and Video Acquisition 21 3.1 Capture Techniques Capable of HDR . 21 3.1.1 Temporal Exposure Change . 22 3.1.2 Spatial Exposure Change . 23 3.1.3 MultipleSensorswithBeamSplitters . 24 3.1.4 SolidStateSensors . 24 3.2 Photometric Calibration of HDR Cameras . 25 3.2.1 Camera Response to Light . 25 3.2.2 Mathematical Framework for Response Estimation . 26 3.2.3 Procedure for Photometric Calibration . 29 3.2.4 Example Calibration of HDR Video Cameras . 30 3.2.5 Quality of Luminance Measurement . 33 3.2.6 Alternative Response Estimation Methods . 33 3.2.7 Discussion ........................... 34 4 HDR Image Quality 39 4.1 VisualMetricClassification. 39 4.2 A Visual Difference Predictor for HDR Images . 41 4.2.1 Implementation......................... 43 5 HDR Image, Video and Texture Compression 45 1 2 CONTENTS 5.1 HDR Pixel Formats and Color Spaces . 46 5.1.1 Minifloat: 16-bit Floating Point Numbers . 47 5.1.2 RGBE: Common Exponent . 47 5.1.3 LogLuv: Logarithmic encoding . 48 5.1.4 RGB Scale: low-complexity RGBE coding . 49 5.1.5 LogYuv: low-complexity LogLuv . 50 5.1.6 JND steps: Perceptually uniform encoding .
    [Show full text]
  • High Dynamic Range Image Compression Based on Visual Saliency Jin Wang,1,2 Shenda Li1 and Qing Zhu1
    SIP (2020), vol. 9, e16, page 1 of 15 © The Author(s), 2020 published by Cambridge University Press in association with Asia Pacific Signal and Information Processing Association. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, providedthesameCreative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use. doi:10.1017/ATSIP.2020.15 original paper High dynamic range image compression based on visual saliency jin wang,1,2 shenda li1 and qing zhu1 With wider luminance range than conventional low dynamic range (LDR) images, high dynamic range (HDR) images are more consistent with human visual system (HVS). Recently, JPEG committee releases a new HDR image compression standard JPEG XT. It decomposes an input HDR image into base layer and extension layer. The base layer code stream provides JPEG (ISO/IEC 10918) backward compatibility, while the extension layer code stream helps to reconstruct the original HDR image. However, thismethoddoesnotmakefulluseofHVS,causingwasteofbitsonimperceptibleregionstohumaneyes.Inthispaper,avisual saliency-based HDR image compression scheme is proposed. The saliency map of tone mapped HDR image is first extracted, then it is used to guide the encoding of extension layer. The compression quality is adaptive to the saliency of the coding region of the image. Extensive experimental results show that our method outperforms JPEG XT profile A, B, C and other state-of-the-art methods.
    [Show full text]
  • Leds Magazine Review and Can Be Downloaded from Our Website
    www.ledsmagazine.com Technology and applications of light emitting diodes LEDs Magazine LEDS Review MAGAZINE Issue 7 June 2006 Editor: Tim Whitaker [email protected] Tel. +44 (0)117 930 1233 Advertising sales: [email protected] Tel. +44 (0)117 930 1028 NEWS & ANALYSIS Lexus aims to be first with LED headlamps…Super Vision dispute with Color Kinetics rumbles on...Osram creates new LED Systems division…EuroLED conference pulls together European LED community…and more p2 LIGHTING LEDs move to the next level at Light+Building p7 LIGHTING LED manufacturers unveil latest advances at lighting shows p13 POCKET PROJECTORS LEDs provide light sources for pocket-sized front projectors p21 VEHICLES Boeing turns to LED lighting for its new 787 Dreamliner p25 Miniaturized projection systems are an emerging market for high-brightness LED light sources. p21 DISPLAYS SID 2006 reinforces emerging role of LEDs in electronic displays p29 WEBSITE ARTICLES Allaeys LED Instruments supplied award-winning BP project…Mission sheds light on LED developments…Running LEDs from an AC supply…and more p31 SUPPLIERS DIRECTORY An Appendix to the LED Suppliers Directory published in our April issue p18 LEDs Magazine is published by IOP Publishing Ltd and Cabot Media Ltd. Contact address: Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. Copyright © 2006 IOP Publishing and Cabot Media Ltd. The new Boeing 787 Dreamliner makes use of Journee Lighting introduced a new dimmable All rights reserved. several LED-based lighting systems. p25 LED-based lighting fixture at Lightfair. p13 S LEDMAGAZINE NEWS & ANALYSIS VEHICLES In May, the US District Court in Massachusetts awarded CK around $1.4 million in costs and attorneys’fees in its successful patent liti- Lexus aims to be first with gation against SV dating back to August 2005.
    [Show full text]
  • High Dynamic Range Metadata for Apple Devices (Preliminary)
    High Dynamic Range Metadata For Apple Devices (Preliminary) " Version 0.9 May 31, 2019 ! Copyright © 2019 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of Apple Inc., registered in the U.S. and other countries. Dolby, Dolby Vision, and the double-D symbol are trademarks of Dolby Laboratories. 1" Introduction 3 Dolby Vision™ 4 HDR10 6 Hybrid Log-Gamma (HLG) 8 References 9 Document Revision History 10 ! Copyright © 2019 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of Apple Inc., registered in the U.S. and other countries. Dolby, Dolby Vision, and the double-D symbol are trademarks of Dolby Laboratories. 2" Introduction This document describes the metadata and constraints for High Dynamic Range (HDR) video stored in a QuickTime Movie or ISO Base Media File required for proper display on Apple Plat- forms. Three types of HDR are detailed. 1. Dolby Vision™ 2. HDR10 3. Hybrid Log-Gamma (HLG) Note: The QuickTime Movie File Format Specification and the ISO Base Media File Format Specification use different terminology for broadly equivalent concepts: atoms and boxes; sam- ple descriptions and sample entries. This document uses the former specification's terminolo- gies without loss of generality. This document covers file-based workflows, for HLS streaming requirements go to: https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_- for_apple_devices ! Copyright © 2019 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of Apple Inc., registered in the U.S. and other countries. Dolby, Dolby Vision, and the double-D symbol are trademarks of Dolby Laboratories.
    [Show full text]
  • Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection
    applied sciences Article Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection Ho-Hyoung Choi 1 , Hyun-Soo Kang 2,* and Byoung-Ju Yun 3,* 1 Advanced Dental Device Development Institute, School of Dentistry, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu 41940, Korea; [email protected] 2 School of Information and Communication Engineering, College of Electrical and Computer Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Korea 3 School of Electronics Engineering, IT College, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea * Correspondence: [email protected] (H.-S.K.); [email protected] (B.-J.Y.); Tel.: +82-53-950-7329 (B.-J.Y.) Received: 9 September 2019; Accepted: 29 October 2019; Published: 1 November 2019 Abstract: One of the significant qualities of the human vision, which differentiates it from computer vision, is so called attentional control, which is the innate ability of our human eyes to select what visual stimuli to pay attention to at any moment in time. In this sense, the visual salience detection model, which is designed to simulate how the human visual system (HVS) perceives objects and scenes, is widely used for performing multiple vision tasks. This model is also in high demand in the tone mapping technology of high dynamic range images (HDRIs). Another distinct quality of the HVS is that our eyes blink and adjust brightness when objects are in their sight. Likewise, HDR imaging is a technology applied to a camera that takes pictures of an object several times by repeatedly opening and closing a camera iris, which is referred to as multiple exposures.
    [Show full text]
  • Neuromorphic Camera Guided High Dynamic Range Imaging
    Neuromorphic Camera Guided High Dynamic Range Imaging Jin Han1 Chu Zhou1 Peiqi Duan2 Yehui Tang1 Chang Xu3 Chao Xu1 Tiejun Huang2 Boxin Shi2∗ 1Key Laboratory of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University 2National Engineering Laboratory for Video Technology, Dept. of Computer Science, Peking University 3School of Computer Science, Faculty of Engineering, University of Sydney Abstract Conventional camera Reconstruction of high dynamic range image from a sin- gle low dynamic range image captured by a frame-based Intensity map guided LDR image HDR network conventional camera, which suffers from over- or under- 퐼 exposure, is an ill-posed problem. In contrast, recent neu- romorphic cameras are able to record high dynamic range scenes in the form of an intensity map, with much lower Intensity map spatial resolution, and without color. In this paper, we pro- 푋 pose a neuromorphic camera guided high dynamic range HDR image 퐻 imaging pipeline, and a network consisting of specially Neuromorphic designed modules according to each step in the pipeline, camera which bridges the domain gaps on resolution, dynamic range, and color representation between two types of sen- Figure 1. An intensity map guided HDR network is proposed to sors and images. A hybrid camera system has been built fuse the LDR image from a conventional camera and the intensity to validate that the proposed method is able to reconstruct map captured by a neuromorphic camera, to reconstruct an HDR quantitatively and qualitatively high-quality high dynamic image. range images by successfully fusing the images and inten- ing attention of researchers. Neuromorphic cameras have sity maps for various real-world scenarios.
    [Show full text]