RCA INFORMATION FAIR in This Issue: Monday, January 17Th! 1

Total Page:16

File Type:pdf, Size:1020Kb

RCA INFORMATION FAIR in This Issue: Monday, January 17Th! 1 The Rosette Gazette Volume 17,, IssueIssue 1 Newsletter of the Rose CityCity AstronomersAstronomers January, 2005 All are welcome at the annual RCA INFORMATION FAIR In This Issue: Monday, January 17th! 1 .. General Meeting 2 .. Board Directory The January meeting features our annual Information Fair. This is a great .... President’s Message opportunity to get acquainted, or reacquainted, with RCA activities and .... Magazines members. 3 .. Telescope Sampling # 4 There will be several tables set up in OMSI's Auditorium with members 5 .. RCA Photo Gallery sharing information about RCA programs and activities. The library will be 6 .. Board Meeting Minutes open with hundreds of astronomy related books and videos. If you prefer to .... RCA Library purchase books the RCA Sales table will feature a large assortment of As- 7 .. The Observers Corner tronomy reference books, star-charts, calendars and assorted accessories. 9 .. Astrobiology 11. RCA Downtowners Learn about amateur observing programs such as the Messier, Caldwell and .... Telescope Workshop Herschel programs. Depending on table allocation, RCA members will be .... SIG’s displaying programs such as observing the Moon, Planets, Asteroids and .... Desert Sunset SP! more. Find out about our Telescope Library where members can check out a 12. Calendar variety of telescopes to try out. Find out about the observing site committee and special interest groups. Special interest groups, depending on participa- tion, include Cosmology/Astrophysics, Astrophotography and Amateur Telescope Making. Above all get to know people who share your interests. The fair begins at 7:00 PM, Monday January 17th in the OMSI Auditorium. There will be a short business meeting at 7:30, . Enter at the Planetarium ©Copyright 2005 The Rose Entrance right (north) of the Main Entrance. Proceed to your right to the City Astronomers All Rights Auditorium. Reserved. Hubble Deep Field above courtesy R. Williams (STScI), the Hubble Deep Field Team and NASA. Moon photos below courtesy David Haworth Deadline for submission of articles, ads, and photos for the Gazette is the 20th of each month. Last Quarter Moon New Moon First Quarter Moon Full Moon January 3, 9:47 AM. PST January 10, 4:03 AM PST January 16, 10:57 PM. PST January 25, 2:33 AM. PST Club Officers RCA President Carol Huston (503) 629-8809 [email protected] MAGAZINE SUBSCRIPTIONS Past President Peter Abrahams (503) 699-1056 [email protected] One of the benefits of RCA Membership VP Membership Ken Hose (503) 591-5585 [email protected] is reduced rate subscriptions to Sky & Telescope and Astronomy magazines. VP Observing Matt Vartanian (503) 244-5023 [email protected] Sky & Telescope Magazine is $32.95 for VP Community Affairs Jeff Sponaugle (503) 590-5522 [email protected] one year. Astronomy magazine is $29 for one year or $55 for two years. For VP, Programming Matt Brewster (503) 740-2329 [email protected] more information go to larry's web page: Treasurer Ginny Pitts (360) 737-0569 [email protected] larrygodsey.home.att.net/magazines Secretary Ken Cone (503) 292-0920 [email protected] Larry Godsey, 503-675-5217, Sales Director Sameer Ruiwale (503) 681-0100 [email protected] Subscription Coordinator, will be taking renewals and new subscriptions at the Newsletter Editor Larry Deal (503) 708-4180 [email protected] Magazine Table before General New Member Advisor Jim Reilly (503).493-2386 [email protected] Meetings. Web Master Dareth Murray (503) 957-4499 [email protected] Please Note: Allow two months for your subscription to be renewed. Alcor, Historian Dale Fenske (503) 256-1840 [email protected] Sky & Telescope Store Discount Library Director Jan Keiski (503) 539-4566 [email protected] RCA members who subscribe to Sky & Telescope Director Greg Rohde (503) 629-5475 [email protected] Telescope are entitled to a 10% discount Media Director Patton Echols (503) 936-4270 [email protected] at the Sky & Telescope online store at: http://skyandtelescope.com/shopsky IDA Liaison Bob McGown (503) 244-0078 [email protected] To get your discount, enter Rose City OSP Liaison Dareth Murray (503) 957-4499 [email protected] Astronomers when prompted for your club name during checkout at the Sky & Camp Hancock Liaison Glenn Graham (503) 579-1141 [email protected] Telescope online store. Subscription Director Larry Godsey (503) 675-5217 [email protected] SIG Director Margaret McCrea (503) 232-7636 [email protected] Youth Programs Director Jenny Forrester (503) 504-8070 [email protected] Welcome to Rose City Astronomers for 2005. As I look back over the years, I have President’s seen major changes to our organization occur. When I joined RCA in 1989, there Message were less than 50 members. It was an informal group, all very enthusiastic to share their hobby of astronomy with newcomers and show them the wonders of the night By sky. Since then, I have seen the club grow to 400+ member families, one of the larg- Carol Huston est in the United States. What hasn’t changed is that basic enthusiasm and the willing- January 2005 ness to share that knowledge. Even though the club is daunting in its size, the friendli- ness and informality of its membership is what makes this club so successful. I remember only too well, when I came on the scene, how confusing everything was to me. I knew I wanted a telescope, but what kind amongst all of the choices? I also knew that I was interested in astronomy as a whole, but how would that play out in pursuing it as a hobby? Many members at that time took me under their wings and showed me the ropes, let me view through their scopes, showed me how to read star charts, and oriented me to the constellations. I found my niche through their guidance, and I learned a lot of the things that were a confusion to me before. As I became more active in the club, I could see more “newbies” coming in with this same confusion, and I could recognize it all too well. I wanted to give back to this organization, and I found my calling in new member information. This led to the creation of the welcome packet, the new member packet, new member orientations, and new member information. Over the years, I gravitated through a number of the officer positions on the board: Secretary, VP of Star Parties, VP of Membership, New Member Advisor, and now President. The current RCA board consists of 20+ volunteers who all have stories such as this, and each position fulfills a role that provides a service to the membership of this club. RCA’s bylaws spell out our purpose: RCA is a non-profit, volunteer organization dedicated to promoting the enjoyment and education of astronomy and related subjects to members and the general public. As I look back over the years, I can see that the purpose of our bylaws has been fulfilled for me, members supporting other members, and I look forward to this organization carrying on the same direction. ©Copyright 2005 The Rose City Astronomers All Rights Reserved. Page 2 A SAMPLING OF TELESCOPES FOR THE AMATEUR ASTRONOMER—PART 4 By John W. Siple A Tasco best seller, the cleverly-designed Model #10TE (or #10T) SOLARAMA REFRACTOR (REG NO. 510600, D=76.2mm. F=1200mm., 60X, 96X, 120X, 192X, 300X, 600X) began appearing at the close of the 1950’s. Manufactured by the Japanese optical giant firm Astro Optical Industries, it was distributed worldwide by Tasco Sales, Inc. (1075 N.W. 71st Street, P.O. Box 878, Miami, FL 33138) as an ultra-precision refractor. Both my 1960 brochure or flyer and 1970 catalog have the telescope priced at $299.95. The 3” f/15.7 refractor could be purchased from a host of sources such as the large retailer Montgomery Ward ($199.99 in their 1967-70 catalogs as stock #67 (A-C) 7283 A--the cost jumped to $269.99 by 1973), as a special order from OMSI, and even Cave Optical Co. of Long Beach, CA carried it (in Cave’s 1967/68 price sheet at $199.95). In Sydney, Australia the telescope was available from Amateur Astronomers Supply Co. as Royal Astronomical Telescope Model No. R-74, where the price tag was $199.00 as shown in their September, 1969 catalog. Because of inflationary pressures the price rose steadily in the 1970’s, and by 1978 the #10TE had all but disappeared from dealer’s inventories. It was replaced or supplanted shortly thereafter by Tasco’s Model #10K (“a modernized cheaper-upgrade”), which is reminiscent of Orion’s Sky Explorer II 80mm. f/15 equatorial refractor. Interestingly, Sears, Roebuck, & Co. started carrying a clone of the #10K (Sears catalog number 3 H 4454C, priced at $429.99 in their Fall/Winter 1978 issue) at about the same time. Displayed below is the parts diagram for the #10TE SOLARAMA, taken from page 20 of the Tasco 1964 catalog. (Continued on Page 4) ©1964 Tasco Sales, Inc. Reprinted with permission from Bushnell. ©Copyright 2005 The Rose City Astronomers All Rights Reserved. Page 3 A SAMPLING OF TELESCOPES FOR THE AMATEUR ASTRONOMER—PART 4 (continued from page 3) The vintage Tasco #10TE is characterized by an unusual mounting head design, similar in construction to the common Sears 3” f/16 Discoverer. The mounting is equipped with a latitude scale, hour and declination circles, spirit level, slow-motion flexible controls, and is supported by a rigid adjustable (33-60”) mahogany tripod with a metal accessory shelf. The deluxe rack-and- pinion focuser has lots of travel, and is a marvel of craftsmanship. The telescope is supplied with three interchangeable 0.965” oculars (SR 4mm., HM 12.5mm., and H20mm.), a 2X Barlow lens for doubling of powers, a 90° star diagonal, an erecting prism for daytime viewing, a solar projection set, and a fine hardwood case with handles for storage and transport to and from the ob- serving site.
Recommended publications
  • Introduction No. 110 January 2021
    No. 110 January 2021 Introduction Happy New Year! At the time of writing, vaccines against the SARS-CoV-2 virus are becoming globally available and affordable. This makes me feel as though things are changing for the better, and that just maybe we’ll start to see the beginning of the end of these weird times during 2021! As most of you know, my intention here is to highlight some of the best astronomical targets for binoculars (and small telescopes!) for the coming month. Although it is primarily intended for observers in the UK, nearly all the objects can be seen from anywhere north of latitude 30°N, and many of them from anywhere in the southern hemisphere. In the Solar System, we’re losing Neptune, but gaining the brighter, and far better placed, Vesta, and have a meteor shower renowned for its fireballs. January mornings bring a return of one of my favourite bits of sky: the Virgo-Coma region of galaxies. January also brings a personal “first”: my first international Zoom talk – on binocular astronomy, of course! On the 23rd (my time; 22nd theirs) my appalling sense of humour goes transatlantic. If you would like to receive the newsletter automatically each month, please complete and submit the subscription form. You can get “between the newsletters” alerts, etc. via and . Binocular Sky Newsletter – January 2020 The Deep Sky (Hyperlinks will take you to finder charts and more information on the objects.) Two marvellous binocular targets, the Pleiades (M45) and Collinder 70 (which too few people spend time with in their haste to get to the G reat Orion Nebula) culminate in the early evening, as do the trio of open clusters in Auriga and M35 in Gemini.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Fine-Structure Feii and Siii Absorption in the Spectrum of GRB 051111
    Draft version November 11, 2018 Preprint typeset using LATEX style emulateapj Fine-Structure Fe II and Si II Absorption in the Spectrum of GRB051111: Implications for the Burst Environment E. Berger1,2,3, B. E. Penprase4, D. B. Fox5, S. R. Kulkarni6, G. Hill7, B. Schaefer7, and M. Reed7 Draft version November 11, 2018 ABSTRACT We present an analysis of fine-structure transitions of Fe II and Si II detected in a high-resolution optical spectrum of the afterglow of GRB051111 (z =1.54948). The fine-structure absorption features arising from Fe II* to Fe II****, as well as Si II*, are confined to a narrow velocity structure extending over ±30 km s−1, which we interpret as the burst local environment, most likely a star forming region. We investigate two scenarios for the excitation of the fine-structure levels by collisions with electrons and radiative pumping by an infra-red or ultra-violet radiation field produced by intense star formation in the GRB environment, or by the GRB afterglow itself. We find that the conditions required for collisional excitation of Fe II fine-structure states cannot be easily reconciled with the relatively weak Si II* absorption. Radiative pumping by either IR or UV emission requires > 103 massive hot OB stars within a compact star-forming region a few pc in size, and in the case of IR pumping a large dust content. On the other hand, it is possible that the GRB itself provides the source of IR and/or UV radiation, in which case we estimate that the excitation takes place at a distance of ∼ 10 − 20 pc from the burst.
    [Show full text]
  • Photometrie Observations of Minor Planets at ESO (1976-1979) H
    found that the S/N ratio of the MMT measurement was nearly the same as in the case of the full aperture. Example 5: Reconstruction of Actuallmages by Speckle Holography Speckle interferometry yields the high resolution autocor­ relation of the object. It is also possible to reconstruct actual images from speckle interferograms. For that purpose one has to record speckle interferograms of the object one wants to investigate, and simultaneously • speckle interferograms of an unresolvable star close to the • object. The speckle interferograms of the unresolvable star (point source) are used as the deconvolution keys. It is necessary that the object and the point source are in the same "isoplanatic patch". The isoplanatic patch is the field in which the atmospheric point spread function is nearly space-invariant. We found under good seeing conditions the size of the isoplanatic patch to be as large as 22 srcseconds, which was at the limit of our instrument (article in press). The technique of using as the deconvolution keys speckle interferog rams of a neighbourhood point source is called speckle holography. Speckle holography was first proposed by Liu and Lohmann (Opt. Commun. 8,372) and by Bates and co-worker (Astron. Astrophys. 22, 319). Recently, we have for the first time applied speckle holography to astronomical objects (Appl. Opt. 17, 2660). Figure 6 shows an application of speckle holography. In this experiment we reconstructed a diffraction-limited image of Zeta Cancri A-B by using as the deconvolution keys the speckle interferograms produced by Zeta CNC C, which is 6 arcseconds apart from A-B.
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • Eclipsing Systems with Pulsating Components (Types Β Cep, Δ Sct, Γ Dor Or Red Giant) in the Era of High-Accuracy Space Data
    galaxies Review Eclipsing Systems with Pulsating Components (Types b Cep, d Sct, g Dor or Red Giant) in the Era of High-Accuracy Space Data Patricia Lampens Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium; [email protected] Abstract: Eclipsing systems are essential objects for understanding the properties of stars and stellar systems. Eclipsing systems with pulsating components are furthermore advantageous because they provide accurate constraints on the component properties, as well as a complementary method for pulsation mode determination, crucial for precise asteroseismology. The outcome of space missions aiming at delivering high-accuracy light curves for many thousands of stars in search of planetary systems has also generated new insights in the field of variable stars and revived the interest of binary systems in general. The detection of eclipsing systems with pulsating components has particularly benefitted from this, and progress in this field is growing fast. In this review, we showcase some of the recent results obtained from studies of eclipsing systems with pulsating components based on data acquired by the space missions Kepler or TESS. We consider different system configurations including semi-detached eclipsing binaries in (near-)circular orbits, a (near-)circular and non-synchronized eclipsing binary with a chemically peculiar component, eclipsing binaries showing the heartbeat phenomenon, as well as detached, eccentric double-lined systems. All display one or more pulsating component(s). Among the great variety of known classes of pulsating stars, we discuss unevolved or slightly evolved pulsators of spectral type B, A or F and red giants with solar-like oscillations. Some systems exhibit additional phenomena such as tidal effects, angular momentum transfer, (occasional) Citation: Lampens, P.
    [Show full text]
  • Objects We Observe
    Double/Multiple Stars Culpeper Astronomy Club June 18, 2018 Overview • Introductions • Some Telescope Basics • Double Stars • Constellations • Observing Session Aperture Magnification • Magnification for a specific telescope changes with the eyepiece used • Calculated by dividing the focal length (FL) of the telescope (usually marked on the optical tube) by the focal length (fl) of the eyepiece • Mag = FL / fl • For example: • My Stellarvue SV110ED with a 770mm focal length using a 10mm eyepiece produces 77x magnification (770/10=77x) • My 102mm Unitron with a 1500mm focal length using a 10mm eyepiece produces 150x magnification (1500/10=150x) • 30 inch Obsession, f4.5, about 3500mm focal length using 31mm eyepiece produces 112x (3500/31=112x) • Higher the magnification smaller the field of view (FOV) Resolving Power • Resolving power is the ability of an optical instrument to produce separate images of closely placed objects…a double star • In 1867, William Dawes determined the practical limit on resolving power for a telescope, known as the Dawes limit…the closest that two stars could be together and still be seen as two stars • The Dawes Limit is 4.56 seconds of arc, divided by the telescope aperture in inches; converted to metric (approx): PR = 120/DO) • For example, my SV110ED with 110mm aperture (120/110) has a resolving power of 1.09 arc seconds • My 102mm Unitron has a resolving power nearly the same at (120/102) 1.18 arc seconds • The 30 inch Obsession, theoretically, yields 0.16 arc seconds Binary/Multiple Stars – The Motivation
    [Show full text]
  • July / August 2008 Amateur Astronomy Club Issue 70.1/72.1 29°39’ North, 82°21’ West
    North Central Florida’s July / August 2008 Amateur Astronomy Club Issue 70.1/72.1 29°39’ North, 82°21’ West Member Member Astronomical International League Dark-Sky Association June ATM Meeting Puts to Rest Mirror Concerns Chuck Broward The club's ATM group gathered at Chuck and Judy's house to learn how to use a Foucault tester and a ronchi tester to gage the quality of telescope mirrors. Howard Cohen, Sandon Flowers, and Chuck all provided mirrors to analyze. Don Loftus provided the Foucault tester and the knowledge to use it, and David Liles provided a Ron- chi Tester for the group to learn to use. Bob O'Connell and Fred Heinrich also took part in the evening's activities. Fred's wife Lucille provided some great cupcakes. Between munchies and comments we actually managed to look at several mirrors and de- termined that they were all pretty decent. Some had slight turned edges, others were not quite as corrected as we would hope, but we learned a lot. July's meeting will feature a PowerPoint presentation by Howard Cohen taking a look at earlier days of ATM and professional astronomy too. Meeting location will be announced by list and on the web. Clear Sky! C.S. Broward GhastlySky Observatory Gainesville, Florida Chuck Broward is the ATM Coordinator and AlCor. He has messed with telescopes for way to many years. He owns a C-8, a 10 inch dob, a 102 refractor, and has a closet full of other scopes in various states of repair. How to Observe a UFO President’s Corner It was a dark and stormy night.
    [Show full text]
  • Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 Through 2009
    Vol. 6 No. 3 July 1, 2010 Journal of Double Star Observations Page 180 Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 through 2009 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: Using a 10” Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of “lucky images”, measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented. mented double stars, as will be described in the next Introduction section. Generally, I used a red filter to cope with By using the technique of “lucky imaging”, seeing chromatic aberration of the Barlow lens, as well as to effects can strongly be reduced, and not only the reso- reduce the atmospheric spectrum. For systems with lution of a given telescope can be pushed to its limits, pronounced color contrast, I also made recordings but also the accuracy of position measurements can be with near-IR, green and blue filters in order to pro- better than this by about one order of magnitude. This duce composite images. This setup was the same as I has already been demonstrated in earlier papers in used with telescopes under the southern sky, and as I this journal [1-3]. Standard deviations of separation have described previously [1-3]. Exposure times varied measurements of less than +/- 0.05 msec were rou- between 0.5 msec and 100 msec, depending on the tinely obtained with telescopes of 40 or 50 cm aper- star brightness, and on the seeing.
    [Show full text]
  • Macrocosmo Nº33
    HA MAIS DE DOIS ANOS DIFUNDINDO A ASTRONOMIA EM LÍNGUA PORTUGUESA K Y . v HE iniacroCOsmo.com SN 1808-0731 Ano III - Edição n° 33 - Agosto de 2006 * t i •■•'• bSÈlÈWW-'^Sif J fé . ’ ' w s » ws» ■ ' v> í- < • , -N V Í ’\ * ' "fc i 1 7 í l ! - 4 'T\ i V ■ }'- ■t i' ' % r ! ■ 7 ji; ■ 'Í t, ■ ,T $ -f . 3 j i A 'A ! : 1 l 4/ í o dia que o ceu explodiu! t \ Constelação de Andrômeda - Parte II Desnudando a princesa acorrentada £ Dicas Digitais: Softwares e afins, ATM, cursos online e publicações eletrônicas revista macroCOSMO .com Ano III - Edição n° 33 - Agosto de I2006 Editorial Além da órbita de Marte está o cinturão de asteróides, uma região povoada com Redação o material que restou da formação do Sistema Solar. Longe de serem chamados como simples pedras espaciais, os asteróides são objetos rochosos e/ou metálicos, [email protected] sem atmosfera, que estão em órbita do Sol, mas são pequenos demais para serem considerados como planetas. Até agora já foram descobertos mais de 70 Diretor Editor Chefe mil asteróides, a maior parte situados no cinturão de asteróides entre as órbitas Hemerson Brandão de Marte e Júpiter. [email protected] Além desse cinturão podemos encontrar pequenos grupos de asteróides isolados chamados de Troianos que compartilham a mesma órbita de Júpiter. Existem Editora Científica também aqueles que possuem órbitas livres, como é o caso de Hidalgo, Apolo e Walkiria Schulz Ícaro. [email protected] Quando um desses asteróides cruza a nossa órbita temos as crateras de impacto. A maior cratera visível de nosso planeta é a Meteor Crater, com cerca de 1 km de Diagramadores diâmetro e 600 metros de profundidade.
    [Show full text]
  • Hydrogen Subordinate Line Emission at the Epoch of Cosmological Recombination M
    Astronomy Reports, Vol. 47, No. 9, 2003, pp. 709–716. Translated from Astronomicheski˘ı Zhurnal, Vol. 80, No. 9, 2003, pp. 771–779. Original Russian Text Copyright c 2003 by Burgin. Hydrogen Subordinate Line Emission at the Epoch of Cosmological Recombination M. S. Burgin Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Profsoyuznaya ul. 84/32, Moscow, 117997 Russia Received December 10, 2002; in final form, March 14, 2003 Abstract—The balance equations for the quasi-stationary recombination of hydrogen plasma in a black- body radiation field are solved. The deviations of the excited level populations from equilibrium are computed and the rates of uncompensated line transitions determined. The expressions obtained are stable for computations of arbitrarily small deviations from equilibrium. The average number of photons emitted in hydrogen lines per irreversible recombination is computed for plasma parameters corresponding to the epoch of cosmological recombination. c 2003 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION of this decay is responsible for the appreciable differ- When the cosmological expansion of the Universe ence between the actual degree of ionization and the lowered the temperature sufficiently, the initially ion- value correspondingto the Saha –Boltzmann equi- ized hydrogen recombined. According to [1, 2], an librium. A detailed analysis of processes affectingthe appreciable fraction of the photons emitted at that recombination rate and computations of the temporal time in subordinate lines survive to the present, lead- behavior of the degree of ionization for various sce- ingto the appearance of spectral lines in the cosmic narios for the cosmological expansion are presented background (relict) radiation. Measurements of the in [5, 6].
    [Show full text]