Algebraic Topology Notes, Part Ii: Fundamental Group
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
TOPOLOGY QUALIFYING EXAM May 14, 2016 Examiners: Dr
Department of Mathematics and Statistics University of South Florida TOPOLOGY QUALIFYING EXAM May 14, 2016 Examiners: Dr. M. Elhamdadi, Dr. M. Saito Instructions: For Ph.D. level, complete at least seven problems, at least three problems from each section. For Master’s level, complete at least five problems, at least one problem from each section. State all theorems or lemmas you use. Section I: POINT SET TOPOLOGY 1. Let K = 1/n n N R.Let K = (a, b), (a, b) K a, b R,a<b . { | 2 }⇢ B { \ | 2 } Show that K forms a basis of a topology, RK ,onR,andthatRK is strictly finer than B the standard topology of R. 2. Recall that a space X is countably compact if any countable open covering of X contains afinitesubcovering.ProvethatX is countably compact if and only if every nested sequence C C of closed nonempty subsets of X has a nonempty intersection. 1 ⊃ 2 ⊃··· 3. Assume that all singletons are closed in X.ShowthatifX is regular, then every pair of points of X has neighborhoods whose closures are disjoint. 4. Let X = R2 (0,n) n Z (integer points on the y-axis are removed) and Y = \{ | 2 } R2 (0,y) y R (the y-axis is removed) be subspaces of R2 with the standard topology.\{ Prove| 2 or disprove:} There exists a continuous surjection X Y . ! 5. Let X and Y be metrizable spaces with metrics dX and dY respectively. Let f : X Y be a function. Prove that f is continuous if and only if given x X and ✏>0, there! exists δ>0suchthatd (x, y) <δ d (f(x),f(y)) <✏. -
On Contractible J-Saces
IHSCICONF 2017 Special Issue Ibn Al-Haitham Journal for Pure and Applied science https://doi.org/ 10.30526/2017.IHSCICONF.1867 On Contractible J-Saces Narjis A. Dawood [email protected] Dept. of Mathematics / College of Education for Pure Science/ Ibn Al – Haitham- University of Baghdad Suaad G. Gasim [email protected] Dept. of Mathematics / College of Education for Pure Science/ Ibn Al – Haitham- University of Baghdad Abstract Jordan curve theorem is one of the classical theorems of mathematics, it states the following : If C is a graph of a simple closed curve in the complex plane the complement of C is the union of two regions, C being the common boundary of the two regions. One of the region is bounded and the other is unbounded. We introduced in this paper one of Jordan's theorem generalizations. A new type of space is discussed with some properties and new examples. This new space called Contractible J-space. Key words : Contractible J- space, compact space and contractible map. For more information about the Conference please visit the websites: http://www.ihsciconf.org/conf/ www.ihsciconf.org Mathematics |330 IHSCICONF 2017 Special Issue Ibn Al-Haitham Journal for Pure and Applied science https://doi.org/ 10.30526/2017.IHSCICONF.1867 1. Introduction Recall the Jordan curve theorem which states that, if C is a simple closed curve in the plane ℝ, then ℝ\C is disconnected and consists of two components with C as their common boundary, exactly one of these components is bounded (see, [1]). Many generalizations of Jordan curve theorem are discussed by many researchers, for example not limited, we recall some of these generalizations. -
Categories of Sets with a Group Action
Categories of sets with a group action Bachelor Thesis of Joris Weimar under supervision of Professor S.J. Edixhoven Mathematisch Instituut, Universiteit Leiden Leiden, 13 June 2008 Contents 1 Introduction 1 1.1 Abstract . .1 1.2 Working method . .1 1.2.1 Notation . .1 2 Categories 3 2.1 Basics . .3 2.1.1 Functors . .4 2.1.2 Natural transformations . .5 2.2 Categorical constructions . .6 2.2.1 Products and coproducts . .6 2.2.2 Fibered products and fibered coproducts . .9 3 An equivalence of categories 13 3.1 G-sets . 13 3.2 Covering spaces . 15 3.2.1 The fundamental group . 15 3.2.2 Covering spaces and the homotopy lifting property . 16 3.2.3 Induced homomorphisms . 18 3.2.4 Classifying covering spaces through the fundamental group . 19 3.3 The equivalence . 24 3.3.1 The functors . 25 4 Applications and examples 31 4.1 Automorphisms and recovering the fundamental group . 31 4.2 The Seifert-van Kampen theorem . 32 4.2.1 The categories C1, C2, and πP -Set ................... 33 4.2.2 The functors . 34 4.2.3 Example . 36 Bibliography 38 Index 40 iii 1 Introduction 1.1 Abstract In the 40s, Mac Lane and Eilenberg introduced categories. Although by some referred to as abstract nonsense, the idea of categories allows one to talk about mathematical objects and their relationions in a general setting. Its origins lie in the field of algebraic topology, one of the topics that will be explored in this thesis. First, a concise introduction to categories will be given. -
Properties of Digital N-Manifolds and Simply Connected Spaces
The Jordan-Brouwer theorem for the digital normal n-space Zn. Alexander V. Evako. [email protected] Abstract. In this paper we investigate properties of digital spaces which are represented by graphs. We find conditions for digital spaces to be digital n-manifolds and n-spheres. We study properties of partitions of digital spaces and prove a digital analog of the Jordan-Brouwer theorem for the normal digital n-space Zn. Key Words: axiomatic digital topology, graph, normal space, partition, Jordan surface theorem 1. Introduction. A digital approach to geometry and topology plays an important role in analyzing n-dimensional digitized images arising in computer graphics as well as in many areas of science including neuroscience and medical imaging. Concepts and results of the digital approach are used to specify and justify some important low- level image processing algorithms, including algorithms for thinning, boundary extraction, object counting, and contour filling. To study properties of digital images, it is desirable to construct a convenient digital n-space modeling Euclidean n-space. For 2D and 3D grids, a solution was offered first by A. Rosenfeld [18] and developed in a number of papers, just mention [1-2,13,15-16], but it can be seen from the vast amount of literature that generalization to higher dimensions is not easy. Even more, as T. Y. Kong indicates in [14], there are problems even for the 2D and 3D grids. For example, different adjacency relations are used to define connectedness on a set of grid points and its complement. Another approach to overcome connectivity paradoxes and some other apparent contradictions is to build a digital space by using basic structures from algebraic topology such as cell complexes or simplicial complexes, see e.g. -
COMPACT CONTRACTIBLE N-MANIFOLDS HAVE ARC SPINES (N > 5)
PACIFIC JOURNAL OF MATHEMATICS Vol. 168, No. 1, 1995 COMPACT CONTRACTIBLE n-MANIFOLDS HAVE ARC SPINES (n > 5) FREDRIC D. ANCEL AND CRAIG R. GUILBAULT The following two theorems were motivated by ques- tions about the existence of disjoint spines in compact contractible manifolds. THEOREM 1. Every compact contractible n-manifold (n > 5) is the union of two n-balls along a contractible (n — 1)-dimensional submanifold of their boundaries. A compactum X is a spine of a compact manifold M if M is homeomorphic to the mapping cylinder of a map from dM to X. THEOREM 2. Every compact contractible n-manifold (n > 5) has a wild arc spine. Also a new proof is given that for n > 6, every homology (n — l)-sphere bounds a compact contractible n-manifold. The implications of arc spines for compact contractible manifolds of dimensions 3 and 4 are discussed in §5. The questions about the existence of disjoint spines in com- pact contractible manifolds which motivated the preced- ing theorems are stated in §6. 1. Introduction. Let M be a compact manifold with boundary. A compactum X is a spine of M if there is a map / : dM -> X and a homeomorphism h : M —> Cyl(/) such that h(x) = q((x,0)) for x G dM. Here Cyl(/) denotes the mapping cylinder of / and q : (dM x [0, l])Ul-) Cyl(/) is the natural quotient map. Thus Q\dMx[o,i) and q\X are embeddings and q(x, 1) = q(f(x)) for x e ι dM. So h carries dM homeomorphically onto q(M x {0}), h~ oq\x embeds in X int M, and M - h~ι(q(X)) ^ dM x [0,1). -
Homology Homomorphism
|| Computations Induced (Co)homology homomorphism Daher Al Baydli Department of Mathematics National University of Ireland,Galway Feberuary, 2017 Daher Al Baydli (NUIGalway) Computations Induced (Co)homology homomorphism Feberuary, 2017 1 / 11 Overview Resolution Chain and cochain complex homology cohomology Induce (Co)homology homomorphism Daher Al Baydli (NUIGalway) Computations Induced (Co)homology homomorphism Feberuary, 2017 2 / 11 Resolution Definition Let G be a group and Z be the group of integers considered as a trivial ZG-module. The map : ZG −! Z from the integral group ring to Z, given by Σmg g 7−! Σmg , is called the augmentation. Definition Let G be a group. A free ZG-resolution of Z is an exact sequence of free G G @n+1 G @n G @n−1 @2 G @1 ZG-modules R∗ : · · · −! Rn+1 −! Rn −! Rn−1 −! · · · −! R1 −! G G R0 −! R−1 = Z −! 0 G with each Ri a free ZG-module for all i ≥ 0. Daher Al Baydli (NUIGalway) Computations Induced (Co)homology homomorphism Feberuary, 2017 3 / 11 Definition Let C = (Cn;@n)n2Z be a chain complex of Z-modules. For each n 2 Z, the nth homology module of C is defined to be the quotient module Ker@n Hn(C) = Im@n+1 G We can also construct an induced cochain complex HomZG (R∗ ; A) of abelian groups: G G δn G δn−1 HomZG (R∗ ; A): · · · − HomZG (Rn+1; A) − HomZG (Rn ; A) − G δn−2 δ1 G δ0 G HomZG (Rn−1; A) − · · · − HomZG (R1 ; A) − HomZG (R0 ; A) Chain and cochain complex G Given a ZG-resolution R∗ of Z and any ZG-module A we can use the G tensor product to construct an induced chain complex R∗ ⊗ZG A of G G @n+1 G @n abelian groups: R∗ ⊗ZG A : · · · −! Rn+1 ⊗ZG A −! Rn ⊗ZG A −! G @n−1 @2 G @1 G Rn−1 ⊗ZG A −! · · · −! R1 ⊗ZG A −! R0 ⊗ZG A Daher Al Baydli (NUIGalway) Computations Induced (Co)homology homomorphism Feberuary, 2017 4 / 11 Definition Let C = (Cn;@n)n2Z be a chain complex of Z-modules. -
Algebraic Topology
Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology . -
Homology Groups of Homeomorphic Topological Spaces
An Introduction to Homology Prerna Nadathur August 16, 2007 Abstract This paper explores the basic ideas of simplicial structures that lead to simplicial homology theory, and introduces singular homology in order to demonstrate the equivalence of homology groups of homeomorphic topological spaces. It concludes with a proof of the equivalence of simplicial and singular homology groups. Contents 1 Simplices and Simplicial Complexes 1 2 Homology Groups 2 3 Singular Homology 8 4 Chain Complexes, Exact Sequences, and Relative Homology Groups 9 ∆ 5 The Equivalence of H n and Hn 13 1 Simplices and Simplicial Complexes Definition 1.1. The n-simplex, ∆n, is the simplest geometric figure determined by a collection of n n + 1 points in Euclidean space R . Geometrically, it can be thought of as the complete graph on (n + 1) vertices, which is solid in n dimensions. Figure 1: Some simplices Extrapolating from Figure 1, we see that the 3-simplex is a tetrahedron. Note: The n-simplex is topologically equivalent to Dn, the n-ball. Definition 1.2. An n-face of a simplex is a subset of the set of vertices of the simplex with order n + 1. The faces of an n-simplex with dimension less than n are called its proper faces. 1 Two simplices are said to be properly situated if their intersection is either empty or a face of both simplices (i.e., a simplex itself). By \gluing" (identifying) simplices along entire faces, we get what are known as simplicial complexes. More formally: Definition 1.3. A simplicial complex K is a finite set of simplices satisfying the following condi- tions: 1 For all simplices A 2 K with α a face of A, we have α 2 K. -
Algebraic Topology
Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy and the Fundamental Group 11 1. Homotopy 11 2. The Fundamental Group 12 3. Homotopy Equivalence 18 4. Categories and Functors 20 5. The fundamental group of S1 22 6. Some Applications 25 Chapter 3. Quotient Spaces and Covering Spaces 33 1. The Quotient Topology 33 2. Covering Spaces 40 3. Action of the Fundamental Group on Covering Spaces 44 4. Existence of Coverings and the Covering Group 48 5. Covering Groups 56 Chapter 4. Group Theory and the Seifert{Van Kampen Theorem 59 1. Some Group Theory 59 2. The Seifert{Van Kampen Theorem 66 Chapter 5. Manifolds and Surfaces 73 1. Manifolds and Surfaces 73 2. Outline of the Proof of the Classification Theorem 80 3. Some Remarks about Higher Dimensional Manifolds 83 4. An Introduction to Knot Theory 84 Chapter 6. Singular Homology 91 1. Homology, Introduction 91 2. Singular Homology 94 3. Properties of Singular Homology 100 4. The Exact Homology Sequence{ the Jill Clayburgh Lemma 109 5. Excision and Applications 116 6. Proof of the Excision Axiom 120 3 4 CONTENTS 7. Relation between π1 and H1 126 8. The Mayer-Vietoris Sequence 128 9. Some Important Applications 131 Chapter 7. Simplicial Complexes 137 1. Simplicial Complexes 137 2. Abstract Simplicial Complexes 141 3. Homology of Simplicial Complexes 143 4. The Relation of Simplicial to Singular Homology 147 5. Some Algebra. The Tensor Product 152 6. -
The Fundamental Group and Covering Spaces
1 SMSTC Geometry and Topology 2011{2012 Lecture 4 The fundamental group and covering spaces Lecturer: Vanya Cheltsov (Edinburgh) Slides: Andrew Ranicki (Edinburgh) 3rd November, 2011 2 The method of algebraic topology I Algebraic topology uses algebra to distinguish topological spaces from each other, and also to distinguish continuous maps from each other. I A `group-valued functor' is a function π : ftopological spacesg ! fgroupsg which sends a topological space X to a group π(X ), and a continuous function f : X ! Y to a group morphism f∗ : π(X ) ! π(Y ), satisfying the relations (1 : X ! X )∗ = 1 : π(X ) ! π(X ) ; (gf )∗ = g∗f∗ : π(X ) ! π(Z) for f : X ! Y ; g : Y ! Z : I Consequence 1: If f : X ! Y is a homeomorphism of spaces then f∗ : π(X ) ! π(Y ) is an isomorphism of groups. I Consequence 2: If X ; Y are spaces such that π(X ); π(Y ) are not isomorphic, then X ; Y are not homeomorphic. 3 The fundamental group - a first description I The fundamental group of a space X is a group π1(X ). I The actual definition of π1(X ) depends on a choice of base point x 2 X , and is written π1(X ; x). But for path-connected X the choice of x does not matter. I Ignoring the base point issue, the fundamental group is a functor π1 : ftopological spacesg ! fgroupsg. I π1(X ; x) is the geometrically defined group of `homotopy' classes [!] of `loops at x 2 X ', continuous maps ! : S1 ! X such that !(1) = x 2 X . -
Problem Set 8 FS 2020
d-math Topology ETH Zürich Prof. A. Carlotto Problem set 8 FS 2020 8. Homotopy and contractible spaces Chef’s table In this problem set, we start working with the most basic notion in Algebraic Topology, that of homotopy (of maps, and topological spaces). The first seven exercises deal, one way or the other, with contractible spaces (those spaces that are equivalent to a point, so the simplest ones we can think of). They are all rather simple, except for 8.5 which is a bit more tedious, and also partly unrelated to the other ones (so maybe skip it at a first reading, and get back to it later). Through Problems 8.6 and 8.7 we introduce a basic operation (called cone), which produces a topological space C(X) given a topological space X. As it often happens in Mathematics, the name is not random: if you take X = S1 then C(X) is an honest ice-cream cone. Problem 8.8 is a first (and most important!) example of ‘non-trivial’ homotopy between maps on spheres, and it introduces some ideas that will come back later in my lectures, when I will prove tha so-called hairy ball theorem. Lastly, Problem 8.9 and Problem 8.10 are meant to clearly suggest the difference between homotopies (of loops) fixing the basepoint and homotopies which are allowed to move basepoints around. The two notions are heavily inequivalent and these two exercises should guide you to build a space which exhibits this inequivalence. These outcome is conceptually very important, and (even if you can’t solve 8.10) the result should be known and understood by all of you. -
Appendix a Topological Groups and Lie Groups
Appendix A Topological Groups and Lie Groups This appendix studies topological groups, and also Lie groups which are special topological groups as well as manifolds with some compatibility conditions. The concept of a topological group arose through the work of Felix Klein (1849–1925) and Marius Sophus Lie (1842–1899). One of the concrete concepts of the the- ory of topological groups is the concept of Lie groups named after Sophus Lie. The concept of Lie groups arose in mathematics through the study of continuous transformations, which constitute in a natural way topological manifolds. Topo- logical groups occupy a vast territory in topology and geometry. The theory of topological groups first arose in the theory of Lie groups which carry differential structures and they form the most important class of topological groups. For exam- ple, GL (n, R), GL (n, C), GL (n, H), SL (n, R), SL (n, C), O(n, R), U(n, C), SL (n, H) are some important classical Lie Groups. Sophus Lie first systematically investigated groups of transformations and developed his theory of transformation groups to solve his integration problems. David Hilbert (1862–1943) presented to the International Congress of Mathe- maticians, 1900 (ICM 1900) in Paris a series of 23 research projects. He stated in this lecture that his Fifth Problem is linked to Sophus Lie theory of transformation groups, i.e., Lie groups act as groups of transformations on manifolds. A translation of Hilbert’s fifth problem says “It is well-known that Lie with the aid of the concept of continuous groups of transformations, had set up a system of geometrical axioms and, from the standpoint of his theory of groups has proved that this system of axioms suffices for geometry”.