energies Review Anti-Reflective Coating Materials: A Holistic Review from PV Perspective Natarajan Shanmugam 1 , Rishi Pugazhendhi 1, Rajvikram Madurai Elavarasan 2,* , Pitchandi Kasiviswanathan 1 and Narottam Das 3,4 1 Department of Mechanical Engineering, Sri Venkateswara College of Engineering, Chennai 602117, India;
[email protected] (N.S.);
[email protected] (R.P.);
[email protected] (P.K.) 2 Department of Electrical and Electronics Engineering, Sri Venkateswara College of Engineering, Chennai 602117, India 3 School of Engineering and Technology, Central Queensland University, Melbourne, VIC 3000, Australia;
[email protected] 4 Centre for Intelligent Systems, School of Engineering and Technology, Central Queensland University, Brisbane, QLD 4000, Australia * Correspondence:
[email protected] Received: 6 April 2020; Accepted: 15 May 2020; Published: 21 May 2020 Abstract: The solar photovoltaic (PV) cell is a prominent energy harvesting device that reduces the strain in the conventional energy generation approach and endorses the prospectiveness of renewable energy. Thus, the exploration in this ever-green field is worth the effort. From the power conversion efficiency standpoint of view, PVs are consistently improving, and when analyzing the potential areas that can be advanced, more and more exciting challenges are encountered. One such crucial challenge is to increase the photon availability for PV conversion. This challenge is solved using two ways. First, by suppressing the reflection at the interface of the solar cell, and the other way is to enhance the optical pathlength inside the cell for adequate absorption of the photons. Our review addresses this challenge by emphasizing the various strategies that aid in trapping the light in the solar cells.