Unveiling Hidden Values of Optimization Models with Metaheuristic Approach

Total Page:16

File Type:pdf, Size:1020Kb

Unveiling Hidden Values of Optimization Models with Metaheuristic Approach University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 Unveiling Hidden Values of Optimization Models with Metaheuristic Approach Ann Kuo University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Library and Information Science Commons, and the Operational Research Commons Recommended Citation Kuo, Ann, "Unveiling Hidden Values of Optimization Models with Metaheuristic Approach" (2014). Publicly Accessible Penn Dissertations. 1334. https://repository.upenn.edu/edissertations/1334 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1334 For more information, please contact [email protected]. Unveiling Hidden Values of Optimization Models with Metaheuristic Approach Abstract Considering that the decision making process for constrained optimization problem is based on modeling, there is always room for alternative solutions because there is usually a gap between the model and the real problem it depicts. This study looks into the problem of finding such alternative solutions, the non-optimal solutions of interest for constrained optimization models, the SoI problem. SoI problems subsume finding easiblef solutions of interest (FoIs) and infeasible solutions of interest (IoIs). In all cases, the interest addressed is post-solution analysis in one form or another. Post-solution analysis of a constrained optimization model occurs after the model has been solved and a good or optimal solution for it has been found. At this point, sensitivity analysis and other questions of import for decision making come into play and for this purpose the SoIs can be very valuable. An evolutionary computation approach (in particular, a population-based metaheuristic) is proposed for solving the SoI problem and a systematic approach with a feasible-infeasible- two-population genetic algorithm is demonstrated. In this study, the effectiveness of the proposed approach on finding SoIs is demonstrated with generalized assignment problems and generalized quadratic assignment problems. Also, the applications of the proposed approach on the multi-objective optimization and robust-optimization issues are examined and illustrated with two-sided matching problems and flowshop scheduling problems respectively. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Operations & Information Management First Advisor Steven O. Kimbrough Keywords Constrained Optimization, Deliberation Support, Genetic Algorithm, Metaheuristic, Post-Evaluation Analysis Subject Categories Library and Information Science | Operational Research This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/1334 UNVEILING HIDDEN VALUES OF OPTIMIZATION MODELS WITH METAHEURISTIC APPROACH Ann Kuo A DISSERTATION in Operations and Information Management For the Graduate Group in Managerial Science and Applied Economics Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2014 Supervisor of Dissertation Steven O. Kimbrough, Professor, OPIM Graduate Group Chairperson Eric T. Bradlow, K.P. Chao Professor, Marketing, Statistics and Education Dissertation Committee Steven O. Kimbrough, Professor, OPIM Monique Guignard-Spielberg, Professor, OPIM Kartik Hosanager, Professor, OPIM UNVEILING HIDDEN VALUES OF OPTIMIZATION MODELS WITH METAHEURISTIC APPROACH c COPYRIGHT 2014 Ann Jane-Ahn Kuo This work is licensed under the Creative Commons Attribution NonCommercial-ShareAlike 3.0 License To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ ACKNOWLEDGEMENT I wish to express my deepest and sincere gratitude to my advisor Prof. Steven O. Kim- brough. Completing this dissertation could not have been possible without his perpetual encouragement, motivation, and support. His insights lead me to this intriguing study and all his contribution of time and ideas make my Ph.D. experience fruitful and stimulating. I am grateful to my dissertation committee members, Prof. Steven O. Kimbrough, Prof. Monique Guignard-Spielberg, and Prof. Kartik Hosanager for their time, suggestions, valu- able comments, and encouragement. I would also like to thank the University of Pennsylva- nia for the financial support which gave me the precious opportunity and made my Ph.D. work possible with the OPIM program. It gives me great pleasure in acknowledging the help of Prof. David Harlan Wood; he is always cheerful, enthusiastic, and willing to share his knowledge and experiences. Finally, I would like to express my heartfelt gratitude, love, and admiration to my parents Prof. T. S. Kuo and A. C. Kuo. I am immensely indebted to them for their upbringing, nurture, unconditional love and endless support in all my pursuits. iii ABSTRACT UNVEILING HIDDEN VALUES OF OPTIMIZATION MODELS WITH METAHEURISTIC APPROACH Ann Kuo Steven O. Kimbrough Considering that the decision making process for constrained optimization problem is based on modeling, there is always room for alternative solutions because there is usually a gap between the model and the real problem it depicts. This study looks into the problem of finding such alternative solutions, the non-optimal solutions of interest for constrained optimization models, the SoI problem. SoI problems subsume finding feasible solutions of interest (FoIs) and infeasible solutions of interest (IoIs). In all cases, the interest addressed is post-solution analysis in one form or another. Post-solution analysis of a constrained optimization model occurs after the model has been solved and a good or optimal solution for it has been found. At this point, sensitivity analysis and other questions of import for decision making come into play and for this purpose the SoIs can be very valuable. An evolutionary computation approach (in particular, a population-based metaheuristic) is proposed for solving the SoI problem and a systematic approach with a feasible-infeasible- two-population genetic algorithm is demonstrated. In this study, the effectiveness of the proposed approach on finding SoIs is demonstrated with generalized assignment problems and generalized quadratic assignment problems. Also, the applications of the proposed approach on the multi-objective optimization and robust-optimization issues are examined and illustrated with two-sided matching problems and flowshop scheduling problems respec- tively. iv TABLE OF CONTENTS ACKNOWLEDGEMENT . iii ABSTRACT . iv LIST OF TABLES . ix LIST OF ILLUSTRATIONS . xi CHAPTER 1 : Supporting Deliberation for Optimization Problems with the Meta- heuristic Approach . 1 1.1 Introduction . 1 1.2 Motivation and Related Work . 2 1.3 An Evolutionary Computation Based Approach - Genetic Algorithms (GAs) 12 1.4 Experiment Settings for Case Study on General Assignment Problems . 19 1.5 Comparison Between Penalty GA and FI-2Pop GA Results . 24 1.6 Two Different Infeasible Solution Fitness Measures . 28 1.7 Collecting the Solutions of Interest . 30 1.8 Using the Solutions of Interest . 35 1.9 Extended Experiments on the Generalized Quadratic Assignment Problem . 39 1.10 Summary and Discussion . 61 CHAPTER 2 : Considering Additional Objectives with the Metaheuristic Approach 64 2.1 Introduction . 64 2.2 Motivation and Related Work . 65 2.3 Evolutionary Matching for Stable Marriages Problem . 75 2.4 Extended Matching Problems - Hospitals Residents Problem with Couples (Couples Problem) . 78 v 2.5 Summary And Discussion . 88 CHAPTER 3 : Finding Robust Solutions with the Metaheuristic Approach . 93 3.1 Introduction . 93 3.2 Motivation and Related Work . 93 3.3 Robust-under-Risk . 96 3.4 Robust-under-Uncertainty . 107 3.5 Summary and Discussion . 139 CHAPTER 4 : Summary . 142 APPENDIX . 147 BIBLIOGRAPHY . 152 vi LIST OF TABLES TABLE 1 : Information on Benchmark Generalized Assignment Problem Sets . 19 TABLE 2 : Categories of GA Performance Assessment . 25 TABLE 3 : GAP11 & GAP12 FoIs: Count and quality of feasible solutions with objective function values near the best known solutions . 26 TABLE 4 : GAP11 & GAP12 IoIs: Count of infeasible solutions with objective function values ≥ or > the known optimal values . 27 TABLE 5 : Comparison for two infeasible solution fitness measures. GAP11 12 SoIs count and quality of feasible solutions with objective function values near the best known solutions . 30 TABLE 6 : Categories of SoI Heaps . 31 TABLE 7 : Two Optimal Solutions for GAP4-2 . 36 TABLE 8 : GAP4-2 Optimal & Near-Optimal Feasible Solutions; from FoI(Obj) 38 TABLE 9 : GAP4-2: Best found solution with job 25 assigned to machine 1 . 38 TABLE 10 : GAP4-2 FoIs with large sums of slacks from FoI(Slacks|MinObj) 39 TABLE 11 : GAP4-2 IoIs with min constraint violations from IoI(SumV) . 40 TABLE 12 : GAP4-2 IoIs Ranked by objective value . 41 TABLE 13 : GQAP: Elloumi Instance Configurations . 42 TABLE 14 : Elloumi c1003 Problem Set Solution of Interest (SoI) Findings . 48 TABLE 15 : Elloumi c1003 Problem Set IoI Information . 49 TABLE 16 : GQAP: Near-Optimal Feasible Solutions Information . 58 TABLE 17 : GQAP: Near/Optimal Feasible Solutions Truck Assignment . 58 TABLE 18 : GQAP: Near-Optimal Infeasible Solutions Information . 60 TABLE 19 : GQAP: Near Optimal Infeasible Solutions Truck Assignment . 60 TABLE 20 : 20x20 TPXOver Strongly Dominating Solution Counts, m04x06p50t100g2000 77 vii TABLE 21 : 20x20 TPXOver 0.8, Mutation 0.3, One-Away Strongly Dominating
Recommended publications
  • Lecture 3 1 Geometry of Linear Programs
    ORIE 6300 Mathematical Programming I September 2, 2014 Lecture 3 Lecturer: David P. Williamson Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will talk about the geometry of linear programs. 1 Geometry of Linear Programs First we need some definitions. Definition 1 A set S ⊆ <n is convex if 8x; y 2 S, λx + (1 − λ)y 2 S, 8λ 2 [0; 1]. Figure 1: Examples of convex and non convex sets Given a set of inequalities we define the feasible region as P = fx 2 <n : Ax ≤ bg. We say that P is a polyhedron. Which points on this figure can have the optimal value? Our intuition from last time is that Figure 2: Example of a polyhedron. \Circled" corners are feasible and \squared" are non feasible optimal solutions to linear programming problems occur at \corners" of the feasible region. What we'd like to do now is to consider formal definitions of the \corners" of the feasible region. 3-1 One idea is that a point in the polyhedron is a corner if there is some objective function that is minimized there uniquely. Definition 2 x 2 P is a vertex of P if 9c 2 <n with cT x < cT y; 8y 6= x; y 2 P . Another idea is that a point x 2 P is a corner if there are no small perturbations of x that are in P . Definition 3 Let P be a convex set in <n. Then x 2 P is an extreme point of P if x cannot be written as λy + (1 − λ)z for y; z 2 P , y; z 6= x, 0 ≤ λ ≤ 1.
    [Show full text]
  • Deferred Acceptance Algorithms: History, Theory, Practice, and Open Questions
    Int J Game Theory (2008) 36:537–569 DOI 10.1007/s00182-008-0117-6 ORIGINAL PAPER Deferred acceptance algorithms: history, theory, practice, and open questions Alvin E. Roth Accepted: 19 July 2007 / Published online: 29 January 2008 © Springer-Verlag 2008 Abstract The deferred acceptance algorithm proposed by Gale and Shapley (1962) has had a profound influence on market design, both directly, by being adapted into practical matching mechanisms, and, indirectly, by raising new theoretical questions. Deferred acceptance algorithms are at the basis of a number of labor market clea- ringhouses around the world, and have recently been implemented in school choice systems in Boston and New York City. In addition, the study of markets that have failed in ways that can be fixed with centralized mechanisms has led to a deeper understanding of some of the tasks a marketplace needs to accomplish to perform well. In particular, marketplaces work well when they provide thickness to the mar- ket, help it deal with the congestion that thickness can bring, and make it safe for participants to act effectively on their preferences. Centralized clearinghouses organi- zed around the deferred acceptance algorithm can have these properties, and this has sometimes allowed failed markets to be reorganized. Keywords Matching · Market design · Gale-shapley · Deferred acceptance Introduction Matching is one of the important functions of markets. Who gets which jobs, which school places, who marries whom, these help shape lives and careers. Partly for this reason, a substantial literature has grown out of the remarkable paper “College Admissions and the Stability of Marriage” that David Gale and Lloyd Prepared for Gale’s Feast: a Day in honor of the 85th birthday of David Gale, July 2007, Stony Brook.
    [Show full text]
  • Extreme Points and Basic Solutions
    EXTREME POINTS AND BASIC SOLUTIONS: In Linear Programming, the feasible region in Rn is defined by P := {x ∈ Rn | Ax = b, x ≥ 0}. The set P , as we have seen, is a convex subset of Rn. It is called a convex polytope. The term convex polyhedron refers to convex polytope which is bounded. Polytopes in two dimensions are often called polygons. Recall that the vertices of a convex polytope are what we called extreme points of that set. Recall that extreme points of a convex set are those which cannot be represented as a proper convex combination of two other (distinct) points of the convex set. It may, or may not be the case that a convex set has any extreme points as shown by the example in R2 of the strip S := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y ∈ R}. On the other hand, the square defined by the inequalities |x| ≤ 1, |y| ≤ 1 has exactly four extreme points, while the unit disk described by the ineqality x2 + y2 ≤ 1 has infinitely many. These examples raise the question of finding conditions under which a convex set has extreme points. The answer in general vector spaces is answered by one of the “big theorems” called the Krein-Milman Theorem. However, as we will see presently, our study of the linear programming problem actually answers this question for convex polytopes without needing to call on that major result. The algebraic characterization of the vertices of the feasible polytope confirms the obser- vation that we made by following the steps of the Simplex Algorithm in our introductory example.
    [Show full text]
  • The Feasible Region for Consecutive Patterns of Permutations Is a Cycle Polytope
    Séminaire Lotharingien de Combinatoire XX (2020) Proceedings of the 32nd Conference on Formal Power Article #YY, 12 pp. Series and Algebraic Combinatorics (Ramat Gan) The feasible region for consecutive patterns of permutations is a cycle polytope Jacopo Borga∗1, and Raul Penaguiaoy 1 1Department of Mathematics, University of Zurich, Switzerland Abstract. We study proportions of consecutive occurrences of permutations of a given size. Specifically, the feasible limits of such proportions on large permutations form a region, called feasible region. We show that this feasible region is a polytope, more precisely the cycle polytope of a specific graph called overlap graph. This allows us to compute the dimension, vertices and faces of the polytope. Finally, we prove that the limits of classical occurrences and consecutive occurrences are independent, in some sense made precise in the extended abstract. As a consequence, the scaling limit of a sequence of permutations induces no constraints on the local limit and vice versa. Keywords: permutation patterns, cycle polytopes, overlap graphs. This is a shorter version of the preprint [11] that is currently submitted to a journal. Many proofs and details omitted here can be found in [11]. 1 Introduction 1.1 Motivations Despite not presenting any probabilistic result here, we give some motivations that come from the study of random permutations. This is a classical topic at the interface of combinatorics and discrete probability theory. There are two main approaches to it: the first concerns the study of statistics on permutations, and the second, more recent, looks arXiv:2003.12661v2 [math.CO] 30 Jun 2020 for the limits of permutations themselves.
    [Show full text]
  • Linear Programming
    Stanford University | CS261: Optimization Handout 5 Luca Trevisan January 18, 2011 Lecture 5 In which we introduce linear programming. 1 Linear Programming A linear program is an optimization problem in which we have a collection of variables, which can take real values, and we want to find an assignment of values to the variables that satisfies a given collection of linear inequalities and that maximizes or minimizes a given linear function. (The term programming in linear programming, is not used as in computer program- ming, but as in, e.g., tv programming, to mean planning.) For example, the following is a linear program. maximize x1 + x2 subject to x + 2x ≤ 1 1 2 (1) 2x1 + x2 ≤ 1 x1 ≥ 0 x2 ≥ 0 The linear function that we want to optimize (x1 + x2 in the above example) is called the objective function.A feasible solution is an assignment of values to the variables that satisfies the inequalities. The value that the objective function gives 1 to an assignment is called the cost of the assignment. For example, x1 := 3 and 1 2 x2 := 3 is a feasible solution, of cost 3 . Note that if x1; x2 are values that satisfy the inequalities, then, by summing the first two inequalities, we see that 3x1 + 3x2 ≤ 2 that is, 1 2 x + x ≤ 1 2 3 2 1 1 and so no feasible solution has cost higher than 3 , so the solution x1 := 3 , x2 := 3 is optimal. As we will see in the next lecture, this trick of summing inequalities to verify the optimality of a solution is part of the very general theory of duality of linear programming.
    [Show full text]
  • Math 112 Review for Exam Ii (Ws 12 -18)
    MATH 112 REVIEW FOR EXAM II (WS 12 -18) I. Derivative Rules • There will be a page or so of derivatives on the exam. You should know how to apply all the derivative rules. (WS 12 and 13) II. Functions of One Variable • Be able to find local optima, and to distinguish between local and global optima. • Be able to find the global maximum and minimum of a function y = f(x) on the interval from x = a to x = b, using the fact that optima may only occur where f(x) has a horizontal tangent line and at the endpoints of the interval. Step 1: Compute the derivative f’(x). Step 2: Find all critical points (values of x at which f’(x) = 0.) Step 3: Plug all the values of x from Step 2 that are in the interval from a to b and the endpoints of the interval into the function f(x). Step 4: Sketch a rough graph of f(x) and pick off the global max and min. • Understand the following application: Maximizing TR(q) starting with a demand curve. (WS 15) • Understand how to use the Second Derivative Test. (WS 16) If a is a critical point for f(x) (that is, f’(a) = 0), and the second derivative is: f ’’(a) > 0, then f(x) has a local min at x = a. f ’’(a) < 0, then f(x) has a local max at x = a. f ’’(a) = 0, then the test tells you nothing. IMPORTANT! For the Second Derivative Test to work, you must have f’(a) = 0 to start with! For example, if f ’’(a) > 0 but f ’(a) ≠ 0, then the graph of f(x) is concave up at x = a but f(x) does not have a local min there.
    [Show full text]
  • Matchingmarkets
    Package ‘matchingMarkets’ February 20, 2015 Version 0.1-2 Depends R (>= 2.15.2) Imports Rcpp (>= 0.11.2), lpSolve (>= 5.6.6), partitions LinkingTo Rcpp, RcppArmadillo Date 2014-08-14 Title An R package for the analysis of stable matchings Author Thilo Klein Maintainer Thilo Klein <[email protected]> Description This package implements a structural estimator to correct for the sample selection bias from observed outcomes in matching markets. It also contains R code for matching algorithms such as the deferred-acceptance algorithm for college admissions, the top-trading-cycles algorithm for house allocation and a partitioning linear program for the roommates problem. URL https://github.com/thiloklein/matchingMarkets License GPL (>= 2) | file LICENSE Repository CRAN Repository/R-Forge/Project matchingmarkets Repository/R-Forge/Revision 16 Repository/R-Forge/DateTimeStamp 2014-11-22 23:10:11 Date/Publication 2014-11-23 09:35:22 NeedsCompilation yes R topics documented: matchingMarkets-package . .2 baac00 . .4 daa..............................................6 khb .............................................8 mfx .............................................9 1 2 matchingMarkets-package plp..............................................9 stabit . 10 stabsim . 15 ttc.............................................. 17 Index 18 matchingMarkets-package An R package for the analysis of stable matchings. Description The matchingMarkets package contains R and C++ code for the estimation of structural models that correct for the sample selection bias of observed outcomes in matching markets. Matching is concerned with who transacts with whom, and how. For example, who works at which job, which students go to which school, who forms a workgroup with whom, and so on. The empirical analysis of matching markets is naturally subject to sample selection problems.
    [Show full text]
  • 15 Hedonic Games Haris Azizaand Rahul Savanib
    Draft { December 5, 2014 15 Hedonic Games Haris Azizaand Rahul Savanib 15.1 Introduction Coalitions are a central part of economic, political, and social life, and coalition formation has been studied extensively within the mathematical social sciences. Agents (be they humans, robots, or software agents) have preferences over coalitions and, based on these preferences, it is natural to ask which coalitions are expected to form, and which coalition structures are better social outcomes. In this chapter, we consider coalition formation games with hedonic preferences, or simply hedonic games. The outcome of a coalition formation game is a partitioning of the agents into disjoint coalitions, which we will refer to synonymously as a partition or coalition structure. The defining feature of hedonic preferences is that every agent only cares about which agents are in its coalition, but does not care how agents in other coali- tions are grouped together (Dr`ezeand Greenberg, 1980). Thus, hedonic preferences completely ignore inter-coalitional dependencies. Despite their relative simplicity, hedonic games have been used to model many interesting settings, such as research team formation (Alcalde and Revilla, 2004), scheduling group activities (Darmann et al., 2012), formation of coalition governments (Le Breton et al., 2008), cluster- ings in social networks (see e.g., Aziz et al., 2014b; McSweeney et al., 2014; Olsen, 2009), and distributed task allocation for wireless agents (Saad et al., 2011). Before we give a formal definition of a hedonic game, we give a standard hedonic game from the literature that we will use as a running example (see e.g., Banerjee et al.
    [Show full text]
  • Stable Matching with PCF Version 2, an Étude in Secure Computation
    Stable Matching with PCF Version 2, an Etude´ in Secure Computation A Thesis Presented to the Faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements for the Degree Master of Science (Computer Science) by Benjamin Terner August 2015 To Mom Everything I am is a reflection of the woman who raised me, and everything I do is an honor to her memory. iii Abstract The classic stable-matching algorithm of Gale and Shapley and subsequent variants by, e.g., Abdulkadiroglu et al. [APR05], have been used successfully in a number of real-world scenarios, including the assignment of US medical school graduates to residency programs and students in New York, Norway, and Singapore to high schools and universities. One shortcoming of the Gale-Shapley family of matching algorithms is susceptibility to strategic manipulation by the participants. The commonly used paradigm to mitigate this shortcoming, employing a trusted third party to compute matchings explicitly, is outdated, expensive, and in some scenarios, impossible. This makes stable matching a natural problem for secure, multiparty computation (SMPC). Secure multiparty computation allows two or more mutually distrustful parties to evaluate a joint function on their inputs without revealing more information about the inputs than each player can derive from his own input and output. We use Portable Circuit Format (PCF), a compiler and interpreter for Yao’s garbled circuit protocols, to produce the first feasible, privacy-preserving protocol for stable matching. In doing so, we improve the theoretical bounds for stable matching constructions, develop global optimizations for PCF circuits, and improve garbling techniques used by PCF.
    [Show full text]
  • The Feasible Region for Consecutive Patterns of Permutations Is a Cycle Polytope
    Algebraic Combinatorics Draft The feasible region for consecutive patterns of permutations is a cycle polytope Jacopo Borga & Raul Penaguiao Abstract. We study proportions of consecutive occurrences of permutations of a given size. Specifically, the limit of such proportions on large permutations forms a region, called feasible region. We show that this feasible region is a polytope, more precisely the cycle polytope of a specific graph called overlap graph. This allows us to compute the dimension, vertices and faces of the polytope, and to determine the equations that define it. Finally we prove that the limit of classical occurrences and consecutive occurrences are in some sense independent. As a consequence, the scaling limit of a sequence of permutations induces no constraints on the local limit and vice versa. (1,0,0,0,0,0) 1 1 (0; 2 ; 2 ; 0; 0; 0) 1 1 1 1 (0; 0; 2 ; 2 ; 0; 0) (0; 2 ; 0; 2 ; 0; 0) 1 1 (0; 0; 0; 2 ; 2 ; 0) arXiv:1910.02233v2 [math.CO] 30 Jun 2020 Figure 1. The four-dimensional polytope P3 given by the six pat- terns of size three (see Eq. (2) for a precise definition). We highlight in light-blue one of the six three-dimensional facets of P3. This facet is a pyramid with square base. The polytope itself is a four-dimensional pyramid, whose base is the highlighted facet. This paper has been prepared using ALCO author class on 1st July 2020. Keywords. Permutation patterns, cycle polytopes, overlap graphs. Acknowledgements. This work was completed with the support of the SNF grants number 200021- 172536 and 200020-172515.
    [Show full text]
  • Mathematical Modelling and Applications of Particle Swarm Optimization
    Master’s Thesis Mathematical Modelling and Simulation Thesis no: 2010:8 Mathematical Modelling and Applications of Particle Swarm Optimization by Satyobroto Talukder Submitted to the School of Engineering at Blekinge Institute of Technology In partial fulfillment of the requirements for the degree of Master of Science February 2011 Contact Information: Author: Satyobroto Talukder E-mail: [email protected] University advisor: Prof. Elisabeth Rakus-Andersson Department of Mathematics and Science, BTH E-mail: [email protected] Phone: +46455385408 Co-supervisor: Efraim Laksman, BTH E-mail: [email protected] Phone: +46455385684 School of Engineering Internet : www.bth.se/com Blekinge Institute of Technology Phone : +46 455 38 50 00 SE – 371 79 Karlskrona Fax : +46 455 38 50 57 Sweden ii ABSTRACT Optimization is a mathematical technique that concerns the finding of maxima or minima of functions in some feasible region. There is no business or industry which is not involved in solving optimization problems. A variety of optimization techniques compete for the best solution. Particle Swarm Optimization (PSO) is a relatively new, modern, and powerful method of optimization that has been empirically shown to perform well on many of these optimization problems. It is widely used to find the global optimum solution in a complex search space. This thesis aims at providing a review and discussion of the most established results on PSO algorithm as well as exposing the most active research topics that can give initiative for future work and help the practitioner improve better result with little effort. This paper introduces a theoretical idea and detailed explanation of the PSO algorithm, the advantages and disadvantages, the effects and judicious selection of the various parameters.
    [Show full text]
  • Lesson . Geometry and Algebra of “Corner Points”
    SAh§þ Linear Programming Spring z§zË Uhan Lesson Ëþ.GeomeTry and Algebra of “Corner Points” §W arm up Example Ë. Consider The sysTem of equaTions hxË + xz − 6xh = Ë6 xË + þxz = Ë (∗) −zxË + ËËxh = −z ⎛ h Ë −6⎞ LeT A = ⎜ Ë þ § ⎟. We have ThaT deT(A) = Ç . ⎝−z § ËË ⎠ ● Does (∗) have a unique soluTion, no soluTions, or an inûniTe number of soluTions? ● Are The row vecTors of A linearly independent? How abouT The column vecTors of A? ● WhaT is The rank of A? Does A have full row rank? ËO verview xz ● Due To convexiTy, local opTimal soluTions of LPs are global opTimal soluTions þ ⇒ Improving search ûnds global opTimal soluTions of LPs ● _e simplex meThod: improving search among “corner points” of The h ↑ (Ë) feasible region of an LP z (z ) ↓ ● How can we describe “corner points” of The feasible region of an LP? Ë ● For LPs, is There always an opTimal soluTion ThaT is a “corner poinT”? xË Ë z h Ë z Polyhedra and exTreme points ● A polyhedron is a seT of vecTors x ThaT saTisfy a ûniTe collecTion of linear consTraints (equaliTies and inequaliTies) ○ Also referred To as a polyhedral seT ● In parTicular: ● Recall: The feasible region of an LP – a polyhedron – is a convex feasible region ● Given a convex feasible region S, a soluTion x ∈ S is an exTreme poinT if There does noT exisT Two disTincT soluTions y, z ∈ S such ThaT x is on The line segmenT joining y and z ○ i.e. There does noT exisT λ ∈ (§, Ë) such ThaT x = λy + (Ë − λ)z Example z.
    [Show full text]