Mast Cell Stabilizer&Rsquo; in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Mast Cell Stabilizer&Rsquo; in Mice Laboratory Investigation (2012) 92, 1472–1482 & 2012 USCAP, Inc All rights reserved 0023-6837/12 $32.00 Evidence questioning cromolyn’s effectiveness and selectivity as a ‘mast cell stabilizer’ in mice Tatsuya Oka, Janet Kalesnikoff, Philipp Starkl, Mindy Tsai and Stephen J Galli Cromolyn, widely characterized as a ‘mast cell stabilizer’, has been used in mice to investigate the biological roles of mast cells in vivo. However, it is not clear to what extent cromolyn can either limit the function of mouse mast cells or influence biological processes in mice independently of effects on mast cells. We confirmed that cromolyn (at 10 mg/kg in vivo or 10–100 mM in vitro) can inhibit IgE-dependent mast cell activation in rats in vivo (measuring Evans blue extravasation in passive cutaneous anaphylaxis (PCA) and increases in plasma histamine in passive systemic anaphylaxis (PSA)) and in vitro (measuring peritoneal mast cell (PMC) b-hexosaminidase release and prostaglandin D2 synthesis). However, under the conditions tested, cromolyn did not inhibit those mast cell-dependent responses in mice. In mice, cromolyn also failed to inhibit the ear swelling or leukocyte infiltration at sites of PCA. Nor did cromolyn inhibit IgE-independent degranulation of mouse PMCs induced by various stimulators in vitro. At 100 mg/kg, a concentration 10 times higher than that which inhibited PSA in rats, cromolyn significantly inhibited the increases in plasma concentrations of mouse mast cell protease-1 (but not of histamine) during PSA, but had no effect on the reduction in body temperature in this setting. Moreover, this concentration of cromolyn (100 mg/kg) also inhibited LPS-induced TNF production in genetically mast cell-deficient C57BL/6-KitW-sh/W-sh mice in vivo. These results question cromolyn’s effectiveness and selectivity as an inhibitor of mast cell activation and mediator release in the mouse. Laboratory Investigation (2012) 92, 1472–1482; doi:10.1038/labinvest.2012.116; published online 20 August 2012 KEYWORDS: anaphylaxis; cromolyn; disodium cromoglycate; DSCG; mast cell; mouse; rat Mast cells have long been regarded as exceptionally efficient been clarified, cromolyn has been used clinically as an anti- initiators and amplifiers of certain innate and acquired im- asthma drug for more than 30 years.10 Clinical studies mune responses, especially IgE-dependent acute responses to showed that inhalation of cromolyn by subjects with allergic challenge with specific antigen.1–5 In addition to their well- asthma blocked allergen-induced bronchospasm, presumably known functions in IgE-dependent responses, mast cells also by inhibiting the release of mediators from mast cells,11 an can secrete mediators in response to a variety of other signals, idea that was supported by the drug’s ability to inhibit the including products of pathogens, components of animal degranulation of rat peritoneal mast cells (PMCs) in response venoms,6,7 products of complement activation, neurotrans- to challenge with IgE and specific antigen in vitro.12–15 For mitters,8 vascular factors,9 and stem cell factor (SCF), this reason, cromolyn is often characterized clinically as a suggesting that mast cells have a much larger spectrum of ‘mast cell stabilizer’,16 and this drug is now used for the treat- potential roles in health and disease than was originally ment of other diseases thought to involve mast cell activa- thought.1–5 tion, including allergic rhinitis, allergic conjunctivitis, and One approach for understanding the roles of mast cells mastocytosis.17 in health and disease would be to employ drugs that can Although the early studies of cromolyn were performed effectively and selectively inhibit the function of this cell predominantly in rats and humans, many groups are now in vivo. Cromolyn (cromolyn sodium, sodium cromoglycate, employing this agent to ‘stabilize’ mast cells or to suppress SCG, disodium cromoglycate, and DSCG) is often used as mast cell functions in mice. Indeed, treatment of mice with such an agent. Although its mechanism of action has not cromolyn in vivo has become commonplace as part of efforts Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA Correspondence: SJ Galli, MD, Department of Pathology, Stanford University School of Medicine, Lane Building, L-235, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. E-mail: [email protected] Received 6 April 2012; revised 12 June 2012; accepted 19 June 2012 1472 Laboratory Investigation | Volume 92 October 2012 | www.laboratoryinvestigation.org Effects of cromolyn in mice versus rats T Oka et al to investigate roles of mast cells in mouse models of host PMCs with cromolyn before stimulating the cells to defense or disease that are thought to be independent of degranulate substantially reduced the inhibitory effect of IgE.18–29 However, surprisingly, there is little published cromolyn on PMC degranulation (an effect of the drug called information supporting the conclusion that cromolyn is ‘tachyphylaxis’12,13), we focused primarily on the effects of either an effective or selective ‘stabilizer’ (ie, inhibitor) of the cromolyn treatment observed when the agent is administered activation of mast cell populations in the mouse. at the time of mast cell activation. We also used genetically On the contrary, one group reported that cromolyn (at mast cell-deficient mice to assess whether the actions of this 200 mg/kg) did not inhibit Evans blue extravasation asso- agent are selective for mast cells in vivo. ciated with IgE-dependent passive cutaneous anaphylaxis (PCA) reactions in mice, one of the most common assays MATERIALS AND METHODS used to measure mast cell function in vivo.30 Moreover, Animals other groups reported that treatment with cromolyn (at KitW-sh/ þ mice generously provided by Peter Besmer 1–100 mM31 or 1–100 mg/ml,15 respectively) at the time of (Memorial Sloan-Kettering Cancer Center) were backcrossed antigen challenge did not inhibit IgE plus antigen-induced with C57BL/6 J mice (Jackson Laboratories) for more than degranulation31 or cysteinyl leukotriene release15 in mouse 11 generations to produce mast cell-deficient C57BL/ bone-marrow-derived cultured mast cells (BMCMCs) 6-KitW-sh/W-sh (herein: KitW-sh/W-sh) mice.34 Cpa3-Cre; in vitro. However, Marquardt et al. reported that long-term Mcl-1 þ / þ and mast cell- and basophil-deficient Cpa3-Cre; culture of mouse BMCMCs with cromolyn, as opposed to Mcl-1fl/fl mice were bred in our laboratory.35 C57BL/6J short-term treatment with the drug, resulted in a significant mice or Wistar rats were purchased from Jackson inhibition of IgE- and antigen-induced mediator release by Laboratories or Charles River, respectively. All animal care BMCMCs, but the basis for the difference in the response and experimentation was conducted in accordance with the of these cells to short-term vs long-term treatment with ‘Guide for the Care and Use of Laboratory Animals’ prepared cromolyn was not defined.31 In addition, Forbes et al.32 by the Institute of Laboratory Animal Resources, National reported that repeated treatment of mice with cromolyn Research Council, and published by the National Academy inhibited the increases in blood concentrations of the mast Press (revised, 1996) and with the approval of the Stanford cell-associated mediator, mouse mast cell protease-1 University Committee on Animal Welfare. (mMCP-1), a product of mucosal mast cells, in mice that genetically overexpressed IL-9. Taken together, such studies PCA Reaction raise the possibility that cromolyn might have inhibitory Rats (female, 8 weeks) and mice (male or female, 8 weeks) effects on some mast cell functions (such as the release of were sensitized by intradermal injection of anti-DNP IgE MCP-1 by mucosal mast cells32) but not others (eg, IgE- (aDNP clone e26, generously provided by Dr Fu-Tong Liu, dependent activation of skin mast cells30), and that the effects UC Davis; 2.5 ng for rat dorsal skin; 10 ng for mouse ear of the drug on even the same type of mast cells may depend pinnae) in saline (0.9% sodium chloride; 50 ml for rats; on the conditions of cromolyn exposure.15,31 10 ml for mice). Twenty-four hours later, DNP-HSA (Sigma; However, there are very few reports analyzing the effects 1 mg/kg for rats; 10 mg/kg for mice) was injected i.v. with or of cromolyn on mouse mast cells, and we are aware of no without cromolyn sodium salt (MP Biomedicals). Mouse ear reports on the effects of cromolyn on mouse PMCs— thickness was measured with a dial thickness gauge (G-1 A, the mast cell type most thoroughly investigated in studies of Ozaki, Tokyo, Japan). Mouse ear pinnae collected from mice 12–15 the effects of cromolyn on mast cell activation in the rat. killed by exposure to CO2 6 h after challenge were fixed in Accordingly, we think that it is difficult to draw any conclu- 10% formalin for preparation of paraffin sections stained sion about the effectiveness or selectivity of cromolyn as with hematoxylin and eosin, and leukocyte numbers were a mast cell stabilizer in mice other than more studies of quantified by light microscopy as per mm of horizontal field this topic are needed. In contrast, there have been many length of the ear (by an observer not aware of the identity of reports showing that cromolyn can inhibit rat PMC degranu- the individual sections). For measuring Evans blue extra- 12–15 33 lation or prostaglandin D2 (PGD2) synthesis in vitro, vasation, Evans blue (Sigma; 10 mg/kg for rats; 100 mg/kg for as well as reduce the extent of IgE-dependent degranulation mice) was injected i.v. with DNP-HSA.36 Thirty minutes of rat skin mast cells in PCA reactions in vivo.13,15,30 later, skin areas were photographed and cut out.
Recommended publications
  • Amlexanox TBK1 & Ikke Inhibitor Catalog # Inh-Amx
    Amlexanox TBK1 & IKKe inhibitor Catalog # inh-amx For research use only Version # 15I29-MM PRODUCT INFORMATION METHODS Contents: Preparation of 10 mg/ml (33.5 mM) stock solution • 50 mg Amlexanox 1- Weigh 10 mg of Amlexanox Storage and stability: 2- Add 1 ml of DMSO to 10 mg Amlexanox. Mix by vortexing. - Amlexanox is provided lyophilized and shipped at room temperature. 3- Prepare further dilutions using endotoxin-free water. Store at -20 °C. Lyophilized Amlexanox is stable for at least 2 years when properly stored. Working concentration: 1-300 μg/ml for cell culture assays - Upon resuspension, prepare aliquots of Amlexanox and store at -20 °C. Resuspended Amlexanox is stable for 6 months when properly stored. TBK1/IKKe inhibition: Quality control: Amlexanox can be used to assess the role of TBK1/IKKe using cellular - Purity ≥97% (UHPLC) assays, as described below in B16-Blue™ ISG cells. - The inhibitory activity of this product has been validated using cellular 1- Prepare a B16-Blue™ ISG cell suspension at ~500,000 cells/ml. assays. 2- Add 160 µl of cell suspension (~75,000 cells) per well. - The absence of bacterial contamination (e.g. lipoproteins and 3- Add 20 µl of Amlexanox 30-300 µg/ml (final concentration) and endotoxins) has been confirmed using HEK-Blue™ TLR2 and HEK-Blue™ incubate at 37 °C for 1 hour. TLR4 cells. 4-Add 20 µl of sample per well of a flat-bottom 96-well plate. Note: We recommend using a positive control such as 5’ppp-dsRNA delivered intracellularly with LyoVec™ . DESCRIPTION 5- Incubate the plate at 37 °C in a 5% CO incubator for 18-24 hours.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Fatty Liver Disease (Nafld/Nash)
    CAYMANCURRENTS ISSUE 31 | WINTER 2019 FATTY LIVER DISEASE (NAFLD/NASH) Targeting Insulin Resistance for the Metabolic Homeostasis Targets Treatment of NASH Page 6 Page 1 Special Feature Inside: Tools to Study NAFLD/NASH A guide to PPAR function and structure Page 3 Pathophysiology of NAFLD Infographic Oxidative Stress, Inflammation, and Apoptosis Targets Page 5 Page 11 1180 EAST ELLSWORTH ROAD · ANN ARBOR, MI 48108 · (800) 364-9897 · WWW.CAYMANCHEM.COM Targeting Insulin Resistance for the Treatment of NASH Kyle S. McCommis, Ph.D. Washington University School of Medicine, St. Louis, MO The obesity epidemic has resulted in a dramatic escalation Defects in fat secretion do not appear to be a driver of in the number of individuals with hepatic fat accumulation hepatic steatosis, as NAFLD subjects display greater VLDL or steatosis. When not combined with excessive alcohol secretion both basally and after “suppression” by insulin.5 consumption, the broad term for this spectrum of disease Fatty acid β-oxidation is decreased in animal models and is referred to as non-alcoholic fatty liver disease (NAFLD). humans with NAFLD/NASH.6-8 A significant proportion of individuals with simple steatosis will progress to the severe form of the disease known as ↑ Hyperinsulinemia Insulin resistance non-alcoholic steatohepatitis (NASH), involving hepatocyte Hyperglycemia damage, inflammation, and fibrosis. If left untreated, Adipose lipolysis NASH can lead to more severe forms of liver disease such Steatosis as cirrhosis, hepatocellular carcinoma, liver failure, and De novo O ↑ lipogenesis HO eventually necessitate liver transplantation. Due to this large clinical burden, research efforts have greatly expanded Fatty acids to better understand NAFLD pathogenesis and the mechanisms underlying the transition to NASH.
    [Show full text]
  • Emerging Drug List AMLEXANOX
    Emerging Drug List AMLEXANOX NO. 1 APRIL 2001 Trade Name (Generic): Amlexanox ( Apthera®) Manufacturer: Access Pharmaceuticals, Inc. / Paladin Labs Inc. Indication: For the treatment of aphthous ulcers (canker sores). Current Regulatory Amlexanox paste is currently marketed in the United States under the trademark Status (in Canada Apthasol™ and is also available in Japan in a tablet formulation for the treatment of and abroad): asthma. A Notice of Compliance was received from the Therapeutic Products Programme on December 11th, 2000. Paladin Labs Inc. would be the distributor of this product in Canada and they expect to launch the product early in the year 2001. Description: At this time, the exact mechanism of action by which amlexanox causes accelerated healing of aphthous ulcers is unknown. Amlexanox, an antiallergic agent, is a potent inhibitor of the formation and/or release of inflammatory mediators from cells including neutrophils and mast cells. As soon as a canker sore is discovered, a small amount of paste (i.e., 0.5 cm) is applied four times daily to each ulcer. Treatment is continued until the ulcer is healed. Should no significant healing or pain relief be apparent after 10 days of use, medical or dental advice should be sought. Apthera® is expected to be available as a 5% paste formulation in Canada. Current Treatment: Treating aphthous ulcers can be accomplished via topical and oral interventions. Medications are aimed at reducing secondary infection, controlling pain, reducing the duration of lesion presence, and possibly preventing recurrence. There have been numerous medications studied in the treatment of the lesions, both systemic and topical.
    [Show full text]
  • Drug Formulary Effective October 1, 2021
    Kaiser Permanente Hawaii QUEST Integration Drug Formulary Effective October 1, 2021 Kaiser Permanente Hawaii uses a drug formulary to ensure that the most appropriate and effective prescription drugs are available to you. The formulary is a list of drugs that have been approved by our Pharmacy and Therapeutics (P&T) Committee. Committee members include pharmacists, physicians, nurses, and other allied health care professionals. Our drug formulary allows us to select drugs that are safe, effective, and a good value for you. We review our formulary regularly so that we can add new drugs and remove drugs that can be replaced by newer, more effective drugs. The formulary also helps us restrict drugs that can be toxic or otherwise dangerous if. Our drug formulary is considered a closed formulary, which means that drugs on the list are usually covered under the prescription drug benefit, if you have one. However, drugs on our formulary may not be automatically covered under your prescription benefit because these benefits vary depending on your plan. Please check with your Kaiser Permanente pharmacist when you have questions about whether a drug is on our formulary or if there are any restrictions or limitations to obtaining a drug. NON-FORMULARY DRUGS Non-formulary drugs are those that are not included on our drug formulary. These include new drugs that haven’t been reviewed yet; drugs that our clinicians and pharmacists have decided to leave off the formulary, or a different strength or dosage of a formulary drug that we don’t stock in our Kaiser Permanente pharmacies. Even though non-formulary drugs are generally not covered under our prescription drug benefit options, your Kaiser Permanente doctor can request a non-formulary drug for you when formulary alternatives have failed and the non-formulary drug is medically necessary, provided the drug is not excluded under the prescription drug benefit.
    [Show full text]
  • Peripheral Regulation of Pain and Itch
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1596 Peripheral Regulation of Pain and Itch ELÍN INGIBJÖRG MAGNÚSDÓTTIR ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0746-6 UPPSALA urn:nbn:se:uu:diva-392709 2019 Dissertation presented at Uppsala University to be publicly examined in A1:107a, BMC, Husargatan 3, Uppsala, Friday, 25 October 2019 at 13:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor emeritus George H. Caughey (University of California, San Francisco). Abstract Magnúsdóttir, E. I. 2019. Peripheral Regulation of Pain and Itch. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1596. 71 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0746-6. Pain and itch are diverse sensory modalities, transmitted by the somatosensory nervous system. Stimuli such as heat, cold, mechanical pain and itch can be transmitted by different neuronal populations, which show considerable overlap with regards to sensory activation. Moreover, the immune and nervous systems can be involved in extensive crosstalk in the periphery when reacting to these stimuli. With recent advances in genetic engineering, we now have the possibility to study the contribution of distinct neuron types, neurotransmitters and other mediators in vivo by using gene knock-out mice. The neuropeptide calcitonin gene-related peptide (CGRP) and the ion channel transient receptor potential cation channel subfamily V member 1 (TRPV1) have both been implicated in pain and itch transmission. In Paper I, the Cre- LoxP system was used to specifically remove CGRPα from the primary afferent population that expresses TRPV1.
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,026,285 B2 Bezwada (45) Date of Patent: Sep
    US008O26285B2 (12) United States Patent (10) Patent No.: US 8,026,285 B2 BeZWada (45) Date of Patent: Sep. 27, 2011 (54) CONTROL RELEASE OF BIOLOGICALLY 6,955,827 B2 10/2005 Barabolak ACTIVE COMPOUNDS FROM 2002/0028229 A1 3/2002 Lezdey 2002fO169275 A1 11/2002 Matsuda MULT-ARMED OLGOMERS 2003/O158598 A1 8, 2003 Ashton et al. 2003/0216307 A1 11/2003 Kohn (75) Inventor: Rao S. Bezwada, Hillsborough, NJ (US) 2003/0232091 A1 12/2003 Shefer 2004/0096476 A1 5, 2004 Uhrich (73) Assignee: Bezwada Biomedical, LLC, 2004/01 17007 A1 6/2004 Whitbourne 2004/O185250 A1 9, 2004 John Hillsborough, NJ (US) 2005/0048121 A1 3, 2005 East 2005/OO74493 A1 4/2005 Mehta (*) Notice: Subject to any disclaimer, the term of this 2005/OO953OO A1 5/2005 Wynn patent is extended or adjusted under 35 2005, 0112171 A1 5/2005 Tang U.S.C. 154(b) by 423 days. 2005/O152958 A1 7/2005 Cordes 2005/0238689 A1 10/2005 Carpenter 2006, OO13851 A1 1/2006 Giroux (21) Appl. No.: 12/203,761 2006/0091034 A1 5, 2006 Scalzo 2006/0172983 A1 8, 2006 Bezwada (22) Filed: Sep. 3, 2008 2006,0188547 A1 8, 2006 Bezwada 2007,025 1831 A1 11/2007 Kaczur (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2009/0076174 A1 Mar. 19, 2009 EP OO99.177 1, 1984 EP 146.0089 9, 2004 Related U.S. Application Data WO WO9638528 12/1996 WO WO 2004/008101 1, 2004 (60) Provisional application No. 60/969,787, filed on Sep. WO WO 2006/052790 5, 2006 4, 2007.
    [Show full text]
  • Vr Meds Ex01 3B 0825S Coding Manual Supplement Page 1
    vr_meds_ex01_3b_0825s Coding Manual Supplement MEDNAME OTHER_CODE ATC_CODE SYSTEM THER_GP PHRM_GP CHEM_GP SODIUM FLUORIDE A12CD01 A01AA01 A A01 A01A A01AA SODIUM MONOFLUOROPHOSPHATE A12CD02 A01AA02 A A01 A01A A01AA HYDROGEN PEROXIDE D08AX01 A01AB02 A A01 A01A A01AB HYDROGEN PEROXIDE S02AA06 A01AB02 A A01 A01A A01AB CHLORHEXIDINE B05CA02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D08AC02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D09AA12 A01AB03 A A01 A01A A01AB CHLORHEXIDINE R02AA05 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S01AX09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S02AA09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S03AA04 A01AB03 A A01 A01A A01AB AMPHOTERICIN B A07AA07 A01AB04 A A01 A01A A01AB AMPHOTERICIN B G01AA03 A01AB04 A A01 A01A A01AB AMPHOTERICIN B J02AA01 A01AB04 A A01 A01A A01AB POLYNOXYLIN D01AE05 A01AB05 A A01 A01A A01AB OXYQUINOLINE D08AH03 A01AB07 A A01 A01A A01AB OXYQUINOLINE G01AC30 A01AB07 A A01 A01A A01AB OXYQUINOLINE R02AA14 A01AB07 A A01 A01A A01AB NEOMYCIN A07AA01 A01AB08 A A01 A01A A01AB NEOMYCIN B05CA09 A01AB08 A A01 A01A A01AB NEOMYCIN D06AX04 A01AB08 A A01 A01A A01AB NEOMYCIN J01GB05 A01AB08 A A01 A01A A01AB NEOMYCIN R02AB01 A01AB08 A A01 A01A A01AB NEOMYCIN S01AA03 A01AB08 A A01 A01A A01AB NEOMYCIN S02AA07 A01AB08 A A01 A01A A01AB NEOMYCIN S03AA01 A01AB08 A A01 A01A A01AB MICONAZOLE A07AC01 A01AB09 A A01 A01A A01AB MICONAZOLE D01AC02 A01AB09 A A01 A01A A01AB MICONAZOLE G01AF04 A01AB09 A A01 A01A A01AB MICONAZOLE J02AB01 A01AB09 A A01 A01A A01AB MICONAZOLE S02AA13 A01AB09 A A01 A01A A01AB NATAMYCIN A07AA03 A01AB10 A A01
    [Show full text]
  • Japanese Guideline for Adult Asthma
    Allergology International. 2011;60:115-145 ! DOI: 10.2332 allergolint.11-RAI-0327 REVIEW ARTICLE Japanese Guideline for Adult Asthma Ken Ohta1, Masao Yamaguchi1, Kazuo Akiyama2, Mitsuru Adachi3, Masakazu Ichinose4, Kiyoshi Takahashi5, Toshiyuki Nishimuta6, Akihiro Morikawa7 and Sankei Nishima8 ABSTRACT Adult bronchial asthma (hereinafter, asthma) is characterized by chronic airway inflammation, reversible airway narrowing, and airway hyperresponsiveness. Long-standing asthma induces airway remodeling to cause an in- tractable asthma. The number of patients with asthma has increased, while the number of patients who die from asthma has decreased (1.7 per 100,000 patients in 2009). The aim of asthma treatment is to enable pa- tients with asthma to lead a healthy life without any symptoms. A partnership between physicians and patients is indispensable for appropriate treatment. Long-term management with agents and elimination of causes and risk factors are fundamental to asthma treatment. Four steps in pharmacotherapy differentiate mild to intensive treatments; each step includes an appropriate daily dose of an inhaled corticosteroid (ICS), varying from low to high doses. Long-acting β2 agonists (LABA), leukotriene receptor antagonists, and theophylline sustained- release preparation are recommended as concomitant drugs, while anti-IgE antibody therapy is a new choice for the most severe and persistent asthma. Inhaled β2 agonists, aminophylline, corticosteroids, adrenaline, oxy- gen therapy, etc., are used as needed against acute exacerbations. Allergic rhinitis, chronic obstructive pulmo- nary disease (COPD), aspirin induced asthma, pregnancy, and cough variant asthma are also important factors that need to be considered. KEY WORDS acute exacerbation, control of asthma, epidemiology of asthma, patient education, treatment step allergens, airway inflammation and lymphocyte acti- 1.
    [Show full text]
  • The Emerging Role of Mast Cell Proteases in Asthma
    REVIEW ASTHMA The emerging role of mast cell proteases in asthma Gunnar Pejler1,2 Affiliations: 1Dept of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. 2Dept of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden. Correspondence: Gunnar Pejler, Dept of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, 75123 Uppsala, Sweden. E-mail: [email protected] @ERSpublications Mast cells express large amounts of proteases, including tryptase, chymase and carboxypeptidase A3. An extensive review of how these proteases impact on asthma shows that they can have both protective and detrimental functions. http://bit.ly/2Gu1Qp2 Cite this article as: Pejler G. The emerging role of mast cell proteases in asthma. Eur Respir J 2019; 54: 1900685 [https://doi.org/10.1183/13993003.00685-2019]. ABSTRACT It is now well established that mast cells (MCs) play a crucial role in asthma. This is supported by multiple lines of evidence, including both clinical studies and studies on MC-deficient mice. However, there is still only limited knowledge of the exact effector mechanism(s) by which MCs influence asthma pathology. MCs contain large amounts of secretory granules, which are filled with a variety of bioactive compounds including histamine, cytokines, lysosomal hydrolases, serglycin proteoglycans and a number of MC-restricted proteases. When MCs are activated, e.g. in response to IgE receptor cross- linking, the contents of their granules are released to the exterior and can cause a massive inflammatory reaction. The MC-restricted proteases include tryptases, chymases and carboxypeptidase A3, and these are expressed and stored at remarkably high levels.
    [Show full text]
  • Download PDF File
    CLINICAL CARDIOLOGY Cardiology Journal 2019, Vol. 26, No. 6, 680–686 DOI: 10.5603/CJ.a2018.0018 Copyright © 2019 Via Medica ORIGINAL ARTICLE ISSN 1897–5593 Mast cell derived carboxypeptidase A3 is decreased among patients with advanced coronary artery disease Łukasz Lewicki1, 2, 3, Janusz Siebert1, 4, Tomasz Koliński5, Karolina Piekarska5, Magdalena Reiwer-Gostomska4, Radosław Targoński3, Piotr Trzonkowski6, Natalia Marek-Trzonkowska5 1University Center for Cardiology, Gdansk, Poland 2Department of Machine Design and Automotive Engineering, Faculty of Mechanical Engineering, Gdansk University of Technology, Gdansk, Poland 3Pomeranian Cardiology Centers, Wejherowo, Poland 4Department of Family Medicine, Medical University of Gdansk, Poland 6Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdansk, Poland 7Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland Abstract Background: Coronary artery disease (CAD) affects milions of people and can result in myocardial infarction (MI). Previously, mast cells (MC) have been extensively investigated in the context of hyper- sensitivity, however as regulators of the local inflammatory response they can potentially contribute to CAD and/or its progression. The aim of the study was to assess if serum concentration of MC proteases: carboxypeptidase A3, cathepsin G and chymase 1 is associated with the extension of CAD and MI. Methods: The 44 patients with angiographically confirmed CAD (23 subjects with non-ST-segment elevation MI [NSTEMI] and 21 with stable CAD) were analyzed. Clinical data were obtained as well serum concentrations of carboxypeptidase A3, cathepsin G and chymase 1 were also measured. Results: Patients with single vessel CAD had higher serum concentration of carboxypeptidase than those with more advanced CAD (3838.6 ± 1083.1 pg/mL vs.
    [Show full text]