Climate Change and Invertebrate Genetic Resources for Food and Agriculture: State of Knowledge, Risks and Opportunities
Total Page:16
File Type:pdf, Size:1020Kb
BACKGROUND STUDY PAPER NO. 54 May 2011 E COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE CLIMATE CHANGE AND INVERTEBRATE GENETIC RESOURCES FOR FOOD AND AGRICULTURE: STATE OF KNOWLEDGE, RISKS AND OPPORTUNITIES by Matthew J.W. Cock, Jacobus C. Biesmeijer, Raymond J.C. Cannon, Philippa J. Gerard, Dave Gillespie, Juan J. Jiménez, Patrick M. Lavelle, Suresh K. Raina1 This document has been prepared at the request of the Secretariat of the FAO Commission on Genetic Resources for Food and Agriculture, as a contribution to the crosssectoral theme, Consideration of scoping study on climate change and genetic resources for food and agriculture, which the Commission will consider at its Thirteenth Regular Session. The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 For affiliation of the authors see Annex 1. BACKGROUND STUDY PAPER NO. 54 i TABLE OF CONTENTS LIST OF ABBREVIATIONS ............................................................................................................... 1 GLOSSARY............................................................................................................................................ 1 EXECUTIVE SUMMARY ................................................................................................................... 6 CHAPTER I. INTRODUCTION ....................................................................................................... 10 CHAPTER II. ROLES OF INVERTEBRATES IN SUSTAINABLE AGRICULTURE AND FOOD SECURITY ..................................................................................................................... 12 2.1 SOIL INVERTEBRATES ........................................................................................................................... 12 2.2 BIOLOGICAL CONTROL AGENTS ......................................................................................................... 19 2.3 POLLINATORS .......................................................................................................................................... 24 2.4 INVERTEBRATES AS A SOURCE OF PRODUCTS AND FOOD .......................................................... 27 CHAPTER III. EFFECTS OF CLIMATE CHANGE ON INVERTEBRATES RELEVANT TO FOOD AND AGRICULTURE ..................................................................................................... 28 3.1 INTRODUCTION ....................................................................................................................................... 28 3.2 CLIMATE CHANGE PREDICTIONS ....................................................................................................... 29 3.3 IMPACT OF CLIMATE CHANGE ON INVERTEBRATES RELEVANT TO FOOD AND AGRICULTURE ............................................................................................................................................... 30 3.4 BIOGEOGRAPHICAL DIFFERENCES – TEMPERATE, SUBTROPICAL AND TROPICAL ZONE VULNERABILITIES ........................................................................................................................................ 38 CHAPTER IV. POTENTIAL ROLE OF INVERTEBRATES IN THE FACE OF CLIMATE CHANGE .......................................................................................................................... 39 4.1 SOIL INVERTEBRATES ........................................................................................................................... 39 4.2 BIOLOGICAL CONTROL AGENTS ......................................................................................................... 45 4.3 POLLINATORS .......................................................................................................................................... 50 4.4 INVERTEBRATES AS A SOURCE OF PRODUCTS AND FOOD .......................................................... 55 CHAPTER V. CONCLUSIONS AND KEY GAPS .......................................................................... 55 ACKNOWLEDGEMENTS ................................................................................................................ 57 REFERENCES ..................................................................................................................................... 58 CASE STUDIES ................................................................................................................................... 74 ANNEX 1: AFFILIATION OF THE AUTHORS ........................................................................... 105 ii BACKGROUND STUDY PAPER NO. 54 LIST OF CASE STUDIES 1. Rehabilitation of degraded soils by triggering soil invertebrate activities in Africa ......................................... 74 2. Beetle banks for conservation of generalist predatory beetles .......................................................................... 75 3. Saving millions of cassava smallholder farmers in Africa................................................................................ 76 4. Augmentative biological control of greenhouse whitefly on greenhouse crops ............................................... 77 5. Generalist augmentative biological control agents can prevent new pests disrupting integrated pest management: South American tomato pinworm ................................................................................. 78 6. The potato/tomato psyllid, Bactericera cockerelli, disrupts greenhouse integrated pest management ............ 79 7. Crop dependence on pollination ....................................................................................................................... 80 8. The million dollar oil palm pollinator weevil ................................................................................................... 81 9. The role of varroa mites in infections of Kashmir bee virus and deformed wing virus in honeybee................ 82 10. Cordyceps harvesting in the Himalayas .......................................................................................................... 83 11. Edible soil invertebrate consumption in tropical areas of South America ...................................................... 84 12. Edible caterpillars of the miombo woodland, southern Africa ....................................................................... 85 13. Functional shifts in community composition of soil invertebrates under elevated CO2 ................................. 86 14. Insect adaption or movement: the evidence from the sub-fossil record in glaciation history ......................... 87 15. Climate change-related expansions in the range of the southern green stink bug, a cosmopolitan invader. .. 88 16. Coffee’s most intractable insect pest: the coffee berry borer .......................................................................... 89 17. Climate change may increase wind-assisted migration of invertebrates into New Zealand ........................... 90 18. The Argentine ant, one of the world’s worst invasive aliens. ......................................................................... 91 19. The European corn borer: range shifts and an increased number of generations – climate change in action ............................................................................................................................................... 92 20. Critical regional host: parasitoid population interaction may be jeopardized by climate change ................... 93 21. Differential responses to temperature by pests and biological control agents may be important in determining the effects of climate change ............................................................................................................... 94 22. Synchronization of a pest population can lead to outbreaks due to disruption of biological control agents: coconut leaf beetle in Fiji ........................................................................................................ 95 23. Biological control of corn earworm, Helicoverpa armigera, in New Zealand threatened by climate change ..................................................................................................................................... 96 24. Earthworms enhance plant tolerance to nematode infection through non-trophic effects of ecosystem engineering .......................................................................................................................................... 97 25. Above-ground multitrophic interactions mediated by soil invertebrates and summer drought ...................... 98 26. The invasion and degradation of pastures due to biologically created soil compaction results in negative feedbacks to climate change .................................................................................................. 99 27. Genetic bottlenecks may limit the ability of biological control agents to respond to climate change .......... 100 28. Within-species genetic variation enables a biological control agent to adapt to changing conditions ......... 101 29. The search for pests and their biological control agents in natural habitats: sugarcane pests in the Neotropical Region. ............................................................................................................................................... 102 30. Corridors for migratory pollinators ..............................................................................................................