<<

Acta Univ. Sapientiae, Mathematica, 3, 1 (2011) 43–59

On generalized Hurwitz–Lerch Zeta distributions occuring in statistical inference

Ram K. Saxena Tibor K. Pog´any Department of Mathematics, Jai Narain Faculty od Maritime Studies, University Vyas University, Jodhpur–342005, India of Rijeka, 51000 Rijeka, Croatia email: [email protected] email: [email protected]

Ravi Saxena Dragana Jankov Faculty of Engineering, Jai Narain Vyas Department of Mathematics, University University, Jodhpur–342005, India of Osijek, 31000 Osijek, Croatia email: [email protected] email: [email protected]

Abstract. The object of the present paper is to define certain new in- complete generalized Hurwitz–Lerch Zeta functions and incomplete gen- eralized Gamma functions. Further, we introduce two new statistical dis- tributions named as, generalized Hurwitz–Lerch Zeta Beta prime dis- tribution and generalized Hurwitz–Lerch Zeta and investigate their statistical functions, such as moments, distribution and survivor function, characteristic function, the hazard rate function and the mean residue life functions. Finally, Method parameter es- timators are given by means of a statistical sample of size n. The results obtained provide an elegant extension of the work reported earlier by Garg et al. [3] and others.

2010 Mathematics Subject Classification: 11M35, 33C05, 60E05, 60E10 Key words and phrases: , Lerch zeta function, Hurwitz–Lerch Zeta function, hazard function, mean residual life function, characteristic function, Planck distribution, generalized , moment method parameter estimation 43 44 R. K. Saxena, T. K. Pog´any, R. Saxena, D. Jankov

1 Introduction and preliminaries

A generalized Hurwitz–Lerch Zeta function Φ(z,s,a) is defined [1, p. 27, Eq. 1.11.1] as the power series

zn Φ(z,s,a)= , (1) ∞ (n + a)s nX=0 C Z− C where a ∈ \ 0 ; ℜ{s} >1 when |z| = 1 and s ∈ when |z| <1 and continues meromorphically to the complex s–plane, except for the simple pole at s = 1, with its residue equal to 1. The function Φ(z,s,a) has many special cases such as Riemann Zeta [1], Hurwitz–Zeta [23] and Lerch Zeta function [27, p. 280, Example 8]. Some other special cases involve the (or Jonqi`ere’s function) and the generalized Zeta function [27, p. 280, Example 8], [23, p. 122, Eq. 2.5] discussed for the first time by Lipschitz and Lerch. Lin and Srivastava investigated [12, p. 727, Eq. 8] the Hurwitz–Lerch Zeta function in the following form

n (ρ,σ) (µ)ρn z Φ µ,ν (z,s,a)= ∞ s , (2) (ν)σn (n + a) nX=0 C C Z− R C where µ ∈ ; a, ν ∈ \ 0 ; ρ, σ ∈ + ; ρ<σ for s,z ∈ ; ρ = σ for z ∈ C; ρ = σ, s ∈ C for |z| < 1; ρ = σ, ℜ{s − µ + ν} > 1 for |z| = 1. Here (θ)κn = Γ(θ + κn)/Γ(θ) denotes the generalized Pochhammer symbol, with the convention (θ)0 = 1. Recently, Srivastava et al. [24] studied a new family of the Hurwitz–Lerch Zeta function

n (ρ,σ,κ) (λ)ρn(µ)σn z Φ λ,µ,ν (z,s,a)= ∞ s , (3) (ν)κn (n + a) n! nX=0 C C Z− where λ,µ ∈ ; a, ν ∈ \ 0 ; ρ,σ,κ > 0; for |z| <1 and ℜ{s + ν − λ − µ} >1 for |z| = 1. Function (3) is a generalization of Hurwitz–Lerch Zeta function (1,1,1) Φλ,µ,ν(z,s,a) := Φ λ,µ,ν (z,s,a) which has been studied by Garg et al. [2]. Special attention will be given to the special case of (3) (studied earlier by Goyal and Laddha [4, p. 100, Eq. (1.5)])

n ∗ ( ) (µ) z Φ (z,s,a) := Φ 1,1,1 (z,s,a)= n . (4) µ 1,µ,1 ∞ (n + a)s n! nX=1 Generalized Hurwitz–Lerch Zeta distributions 45

Another case of the Hurwitz–Lerch Zeta function (3), which differs in the choice of parameters, have been considered in [24] as well. Moreover, the article [24] contains the integral representation

(ρ,σ,κ) 1 s−1 −at ∗ (λ, ρ), (µ,σ) −t Φ λ,µ,ν (z,s,a)= ∞ t e 2Ψ1 ze dt, (5) Γ(s) Z0 " (ν, κ) #

valid for all a, s ∈ C, ℜ{a} > 0, ℜ{s} >0, when |z| ≤ 1, z 6= 1; and ℜ{s} >1 for z = 1. Here p n ∗ (a, A)p j=1(aj)Ajn z pΨq z = ∞ q (6) (b, B)q Q (b ) n! " # X j=1 j Bjn n=0 Q stands for the unified variant of the Fox–Wright generalized hypergeometric function with p upper and q lower parameters; (a, A)p denotes the parameter C C Z− p–tuple (a1,A1), ··· , (ap,Ap) and aj ∈ , bi ∈ \ 0 , Ai,Bj > 0 for all j = 1, p, i = 1, q, while the series converges for suitably bounded values of |z| when q p

∆ := 1 + Bj − Aj >0. Xj=1 Xj=1

q Bj In the case ∆ = 0, the converegence holds in the open disc |z| < β = j=1 Bj · p −Aj Q j=1 Aj . Q Remark 1 Let us point out that the original definition of the Fox–Wright function pΨq[z] (consult monographs [1, 11, 15]) contains Gamma functions instead of the here used generalized Pochhammer symbols. However, these two functions differ only up to constant multiplying factor, that is

p (a, A)p j=1 Γ(aj) ∗ (a, A)p pΨq z = Qq pΨq z . (b, B)q = Γ(bj) (b, B)q   j 1   Q The unification’s motivation is clear - for A1 = ··· = Ap = B1 = ··· = Bq = 1, ∗ pΨq[z] one reduces exactly to the generalized hypergeometric function pFq[z], see recent articles [12, 24].

Finally, we recall the integral expression for function (3), derived by Srivas- tava et al. [24]:

λ−1 ρ (ρ,σ,κ) Γ(ν) t (σ,κ−ρ) zt Φ λ,µ,ν (z,s,a)= ∞ ν Φµ,ν−λ κ ,s,a dt, (7) Γ(λ)Γ(ν − λ) Z0 (1 + t) (1 + t)   46 R. K. Saxena, T. K. Pog´any, R. Saxena, D. Jankov where ℜ{ν} > ℜ{λ} >0, κ ≥ ρ>0,σ>0,s ∈ C. Now, we study generalized incomplete functions and the associated statis- tical distributions based mainly on integral expressions (5) and (7).

2 Families of incomplete ϕ and ξ functions

By virtue of integral (7), we define the lower incomplete generalized Hurwitz– Lerch Zeta function as x λ−1 ρ (ρ,σ,κ) Γ(ν) t (σ,κ−ρ) zt ϕλ,µ,ν (z,s,a|x)= ν Φµ,ν−λ κ ,s,a dt, (8) Γ(λ)Γ(ν − λ) Z0 (1 + t) (1 + t)   and the upper (complementary) generalized Hurwitz–Lerch Zeta function in the form Γ(ν) tλ−1 ztρ (ρ,σ,κ) | (σ,κ−ρ) ϕλ,µ,ν (z,s,a x)= ∞ ν Φµ,ν−λ κ ,s,a dt. (9) Γ(λ)Γ(ν − λ) Zx (1 + t) (1 + t)   In both cases one requires ℜ(ν), ℜ(λ) >0, κ ≥ ρ>0; σ>0,s ∈ C. From (8) and (9) readily follows that ( ) ( ) ( ) Φ ρ,σ,κ (z,s,a)= lim ϕ ρ,σ,κ (z,s,a|x)= lim ϕ ρ,σ,κ (z,s,a|x) , (10) λ,µ,ν x λ,µ,ν x 0+ λ,µ,ν (ρ,σ,κ) (ρ,σ,κ) (ρ,σ,κ) →∞ → R Φλ,µ,ν (z,s,a)= ϕλ,µ,ν (z,s,a|x)+ ϕλ,µ,ν (z,s,a|x), x ∈ +. (11) In view of the integral expression (5), the lower incomplete generalized Gamma function and the upper (complementary) incomplete generalized Gamma func- tion are defined respectively by s x (ρ,σ,κ) b s−1 −at ∗ (α, ρ), (µ,σ) −bt ξλ,µ,ν (z,s,a,b|x)= t e 2Ψ1 ze dt (12) Γ(s) Z0 (ν, κ) h i and s (ρ,σ,κ);x, b (α, ρ), (µ,σ) | s−1 −at ∗ −bt ξλ,µ,ν (z,s,a,b x)= ∞ t e 2Ψ1 ze dt, ∞ Γ(s) Zx (ν, κ) h i (13) where ℜ{a}, ℜ{s} > 0, when |z| ≤ 1 (z 6= 1) and ℜ{s} > 1, when z = 1, provided that each side exists. By virtue of (12) and (13) we easily conclude the properties: (ρ,σ,ρ) (ρ,σ,κ) (ρ,σ,κ) Φ (z,s,a)= lim ξ (z,s,a,b|x)= lim ξλ,µ,ν (z,s,a,b|x) , (14) λ,µ,ν x λ,µ,ν x 0+ (ρ,σ,κ) (ρ,σ,κ) →∞(ρ,σ,κ) → R Φλ,µ,ν (z, s, a/b)= ξλ,µ,ν (z,s,a,b|x)+ ξλ,µ,ν (z,s,a,b|x), x ∈ +. (15) Generalized Hurwitz–Lerch Zeta distributions 47 3 Generalized Hurwitz–Lerch Zeta Beta prime distribution

Special functions and integral transforms are useful in the development of the theory of probability density functions (PDF). In this connection, one can refer to the books e.g. by Mathai and Saxena [14, 15] or by Johnson and Kotz [8, 9]. Hurwitz–Lerch Zeta distributions are studied by many mathematicians such as Dash, Garg, Gupta, Kalla, Saxena, Srivastava etc. (see e.g. [2, 3, 6, 7, 18, 19, 20, 21, 25]). Due to usefulness and popularity of Hurwitz–Lerch Zeta distribution in reliability theory, statistical inference etc. the authors are motivated to define a generalized Hurwitz–Lerch Zeta distribution and to investigate its important properties. Let the X be defined on some fixed standard probability space (Ω, F, P). The r.v. X such that possesses PDF

zxρ Φ(σ,κ−ρ) ,s,a  Γ(ν) xλ−1 µ,ν−λ (1 + x)κ x>0, f(x)= Γ(λ)Γ(ν − λ)(1 + x)ν (ρ,σ,κ )  (16)  Φλ,µ,ν (z,s,a) 0 x ≤ 0,   ′ we call generalized Hurwitz–Lerch Zeta Beta prime and write X ∼ HLZB . Here µ, λ are shape parameters, and z stands for the scale parameter which satisfy ℜ{ν} > ℜ{λ} >0, s ∈ C, κ ≥ ρ>0,σ>0. The behaviour of the PDF f(x) at x = 0 depends on λ in the manner that f(0)= 0 for λ>1, while limx 0+ f(x)= for all 0<λ<1. Now, let us mention some interesting special cases of PDF (16). → ∞ (i) For σ = ρ = κ = 1 we get the following Hurwitz–Lerch Zeta Beta prime distribution discussed by Garg et al. [3]:

Γ(ν) xλ−1 zx Φ∗ ,s,a x>0, f (x)= Γ(λ)Γ(ν − λ)Φ (z,s,a) (1 + x)ν µ 1 + x 1  λ,µ,ν 0  elsewhere  Z− R C where a∈ / 0 , ℜ{ν} > ℜ{λ} > 0,x ∈ , s ∈ when |z| < 1 and ∗ ℜ{s−µ} >0, when |z| = 1. Here Φµ(·,s,a) stands for the Goyal–Laddha type generalized Hurwitz–Lerch Zeta function described in (4).

(ii) If we set σ = ρ = κ = λ = 1 it gives a new 48 R. K. Saxena, T. K. Pog´any, R. Saxena, D. Jankov

function, defined by

ν − 1 ∗ zx ν Φµ ,s,a x>0, f2(x)= (1 + x) Φ1,µ,ν(z,s,a) 1 + x (17) 0   x ≤ 0,  Z− R C where a∈ / 0 , ℜ{λ} > 0, x ∈ , s ∈ when |z| < 1 and ℜ{s − µ} > 0, when |z| = 1.

(iii) When σ = ρ = κ = 1 and ν = µ, from (16) it follows

Γ(µ) xλ−1 zx Φ∗ ,s,a x>0, f (x)= Γ(λ)Γ(µ − λ)Φ∗(z,s,a) (1 + x)µ µ 1 + x 3  λ 0   x ≤ 0,  (18) Z− R C with a∈ / 0 , ℜ{µ} > ℜ{λ} >0, x ∈ , s ∈ when |z| <1 and ℜ{s−µ} > 0, when |z| = 1.

(iv) For σ = ρ = κ = 1 and µ = 0, we obtain the Beta prime distribution (or the of the second kind).

(v) For Fischer’s F–distribution, which is a Beta prime distribution, we set σ = ρ = κ = 1 and replace x = mx/n, λ = m/2, ν = (m + n)/2, where m and n are positive integers.

4 Statistical functions for the HLZB′ distribution

In this section we would introduce some classical statistical functions for the HLZB′ distributed random variable having the PDF given with (16). These characteristics are moments of positive, fractional order mr,r ∈ R, being the Mellin transform of order r + 1 of the PDF; the generating function GX(t) which equals to the Laplace transform and the characteristic function (CHF) φX(t) which coincides with the Fourier transform of the PDF (16). We point out that all three highly important characteristics of the proba- bility distributions can be uniquely expressed via the operator of the mathe- matical expectation E. However, it is well–known that for any Borel function ψ there holds Eψ(X)= ψ(x)f(x) dx. (19) ZR Generalized Hurwitz–Lerch Zeta distributions 49

To obtain explicitely mr,GX(t),φX(t) we also need in the sequel the unified Hurwitz–Lerch Zeta function, recently introduced by Srivastava et al. [24]. According to [24] we consider nonnegative integer parameters p, q ∈ N0 = C C Z− {0,1,2, ··· }; λj ∈ , µk ∈ \ 0 ; σj, ρk > 0,j = 1,p, k = 1, q. Then the Unified Hurwitz–Lerch Zeta Function with p + q upper and p + q + 2 lower parameters, reads as follows p (λ ) n (ρ;σ) (ρ1,··· ,ρp;σ1,··· ,σq) j=1 j nρj z Φ (z,s,a) := Φ ··· ··· (z,s,a)= ∞ q , λ;µ λ1, ,λp;µ1, ,µq Q (µ ) (n + a)s n! nX=0 j=1 j nσj Q (20) where s, ℜ{a} >0 and the empty product is taken to be unity. The series (20) converges 1. for all z ∈ C \{0} if Υ> −1; 2. in the open disc |z| < ∇ if Υ =−1; 3. on the circle |z| = ∇, for Υ =−1, ℜ{Θ} > 1/2, where q p q p q p σ −ρ p − q ∇ := σ j ρ j , Υ := σ − ρ +s, Θ := µ − λ + . j j j j j j 2 Yj=1 Yj=1 Xj=1 Xj=1 Xj=1 Xj=1 ′ Theorem 1 Let X ∼ HLZB be a r.v. defined on a standard probability space (Ω, F, P) and let r ∈ R+. Then the rth fractional order moment of X reads as follows (σ,ρ,κ−ρ; κ,κ−ρ) (λ) sin π(ν − λ) Φ (z,s,a) m = r µ,λ+r,ν−λ−r;ν,ν−λ . r (ρ,σ,κ) (21) (1 − ν + λ)r sin π(ν − λ − r) Φ λ,µ,ν (z,s,a) ′ Proof. The fractional moment mr of the r.v. X ∼ HLZB is given by ( ) λ+r−1 ρ E r AΓ ν x (σ,κ−ρ) zx R mr = X = ∞ κ Φ µ,ν−λ κ ,s,a dx r ∈ + , Γ(λ)Γ(ν − λ) Z0 (1 + x) (1 + x)   where A is the related normalizing constant. Expressing the Hurwitz–Lerch Zeta function in initial power series form, and interchanging the order of summation and integration, we find that: AΓ(ν) (µ) zn xλ+r+ρn−1 m = σn dx r Γ(λ)Γ(ν − λ) ∞ (ν − λ) (n + a)s n! Z ∞ (1 + x)ν+κn nX=0 (κ−ρ)n 0 n AΓ(λ + r)Γ(ν − λ − r) (µ)σn(λ + r)ρn (ν − λ − r)(κ−ρ)n z = ∞ · s . Γ(λ)Γ(ν − λ) (ν)κn (ν − λ) (n + a) n! nX=0 (κ−ρ)n 50 R. K. Saxena, T. K. Pog´any, R. Saxena, D. Jankov

By the Euler’s reflection formula we get

n A(λ)r Γ(1 − ν + λ) sin π(ν − λ) (µ)σn(λ + r)ρn(ν − λ − r)(κ−ρ)n z mr = ∞ s Γ(1 − ν + λ + r) sin π(ν − λ − r) (ν)κn(ν − λ) (n + a) n! nX=0 (κ−ρ)n n A(λ)r sin π(ν − λ) (µ)σn(λ + r)ρn(ν − λ − r)(κ−ρ)n z = ∞ s , (1 − ν + λ)r sin π(ν − λ − r) (ν)κn(ν − λ) (n + a) n! nX=0 (κ−ρ)n which is same as (21).  We point out that for the integer r ∈ N, the moment (21) it reduces to

(σ,ρ,κ−ρ; κ,κ−ρ) (−1)r(λ) Φ (z,s,a) = r µ,λ+r,ν−λ−r;ν,ν−λ . mr (ρ,σ,κ) (22) (1 − ν + λ)r Φ λ,µ,ν (z,s,a)

Theorem 2 The generating function GX(t) and the CHF φX(t), t ∈ R for ′ the r.v. X ∼ HLZB are represented in the form

1 (λ) tr G (t)= E −tX = r Φ(ρ,σ,κ) (z,s,a), X e (ρ,σ,κ) ∞ λ+r,µ,ν (23) (1 + λ − ν)r r! Φλ,µ,ν (z,s,a) Xr=0 1 (λ) (−it)r φ (t)= E itX = r Φ(ρ,σ,κ) (z,s,a) . X e (ρ,σ,κ) ∞ λ+r,µ,ν (1 + λ − ν)r r! Φλ,µ,ν (z,s,a) Xr=0 (24)

Proof. Setting ψ(X)= e−tX in (19) respectively, then expanding the Laplace kernel into Maclaurin series, by legitimate interchange the order of summation and integration we obtain the generating function GX(t) in terms of (22). Because φX(t)= GX(−it), t ∈ R, the proof is completed.  The second set of important statistical functions concers the reliability ap- plications of the newly introduced generalized Hurwitz–Lech Zeta Beta prime distribution. The functions associated with r.v. X are the cumulative distribu- tion function (CDF) F, the survivor function S = 1−F, the hazard rate function h = f/(1−F), and the mean residual life function K(x)= E(X−x|X ≥ x). Their explicit formulæ are given in terms of lower and upper incomplete (comple- mentary) ϕ–functions. Generalized Hurwitz–Lerch Zeta distributions 51

′ Theorem 3 Let r.v. X ∼ HLZB . Then we have: zxρ Φ(σ,κ−ρ) ,s,a f(x) Γ(ν) xλ−1 µ,ν−λ (1 + x)κ h(x)= = , (25) S(x) Γ(λ)Γ(ν − λ) (1 + x)ν (ρ,σ,κ )  ϕλ,µ,ν (z,s,a|x) Γ(ν) (µ)) zn K(x)= σn (ρ,σ,κ) ∞ s (ν − λ)(κ−ρ)n (n + a) n! Γ(λ)Γ(ν − λ) ϕ λ,µ,ν (z,s,a|x) nX=0

× B(1+x)−1 ν − λ − 1 + (κ − ρ)n, λ + 1 + ρn − x, (26) where  z a−1 b−1 Bz(a, b)= t (1 − t) dt, min ℜ{a}, ℜ{b} > 0, |z| <1 Z0 represents the incomplete Beta–function. 

Proof. The CDF and the survivor functions of the r.v. X are ϕ(ρ,σ,κ)(z,s,a|x) ϕ(ρ,σ,κ)(z,s,a|x) F(x)= λ,µ,ν , S(x)= λ,µ,ν x>0, (ρ,σ,κ) (ρ,σ,κ) Φλ,µ,ν (z,s,a) Φλ,µ,ν (z,s,a) and vanishes elsewhere. Therefore, being h(x)= f(x)/S(x), (25) is proved. It is well–known that for the mean residual life function there holds [5] 1 K(x)= ∞ tf(t)dt − x. S(x) Zx The integral will be AΓ(ν) (µ) (n + a)−s zn tλ+ρn J = tf(t)dt = σn dt, Z ∞ Γ(λ)Γ(ν − λ) ∞ (ν − λ) n! Z ∞ (1 + t)ν+κn x nX=0 (κ−ρ)n x where the innermost t–integral reduces to the incomplete Beta function in the following way:

p−1 (1+x)−1 t q−p−1 p−1 ∞ q dt = t t dt = B(1+x)−1 p, q − p . Zx (1 + t) Z0  Therefore we conlude −s n AΓ(ν) (µ)σn (n + a) z J = B −1 ν−λ−1+(κ−ρ)n, λ+1+ρn . Γ(λ)Γ(ν − λ) ∞ (ν − λ) n! (1+x) nX=0 (κ−ρ)n  After some simplification it leads to the stated formula (26).  52 R. K. Saxena, T. K. Pog´any, R. Saxena, D. Jankov

5 Generalized Hurwitz–Lerch Zeta Gamma distribution

Gamma–type distributions, associated with certain of science and engineering, are studied by several researchers, such as Stacy [26]. In this section a new probability density function is introduced, which extends both the well–known Gamma distribution [21, 28] and Planck distribution [9]. Consider the r.v. X defined on a standard probability space (Ω, F, P) , de- fined by the PDF

∗ (λ, ρ), (µ,σ) −bx  2Ψ1 ze bsxs−1e−ax (ν, κ) f(x)=  h i x>0, (27)  Γ(s) (ρ,σ,κ)  Φλ,µ,ν (z, s, a/b ) 0, x ≤ 0 ;   where a, b are scale parameters and s is shape parameter. Further ℜ{a}, ℜ{s} > 0 when |z| ≤ 1 (z 6= 1) and ℜ{s} > 1 when z = 1. Such distribution we call by convention generalized Hurwitz–Lerch Zeta Gamma distribution and write X ∼ HLZG. Notice that behavior of f(x) near to the origin depends on s in the manner that f(0)= 0 for s>1, and for s = 1 we have (λ, ρ), (µ,σ) b Ψ∗ z 2 1 (ν, κ) f(0)=   , (ρ,σ,κ)( ) Φλ,µ,ν z, 1, a/b and limx 0+ f(x)= when 0

where ℜ{a}, ℜ{b}, ℜ{s} >0 and |z| <1 or |z| = 1 with ℜ{ν − λ − µ} >0. (b) If we set σ = ρ = κ = 1, b = a, λ = 0, then (27) reduces to the Gamma distribution [9, p. 32] and (c) for σ = ρ = κ = 1, µ = ν, λ = 1 it reduces to the generalized Planck dis- tribution defined by Nadarajah and Kotz [16], which is a generalization of the Planck distribution [9, p. 273]. Generalized Hurwitz–Lerch Zeta distributions 53 6 Statistical functions for the HLZG distribution

In this section we will derive the statistical functions for the r.v. X ∼ HLZG distribution associated with PDF (27). For the moments mr of fractional order r ∈ R+ we derive by definition

(ρ,σ,κ) (s) Φ (z,s + r, a/b) m = xrf(x) x = r λ,µ,ν . r ∞ d r (ρ,σ,κ) (29) Z0 b Φλ,µ,ν (z, s, a/b)

Next we present the Laplace and the Fourier transforms of the probability density function (27), that is the generating function GY(t) and the related CHF φY(t):

Φ(ρ,σ,κ)(z,s, (a + t)/b) G (t)= E −tY = λ,µ,ν , X e (ρ,σ,κ) (30) Φλ,µ,ν (z, s, a/b) ( ) Φ ρ,σ,κ (z,s, (a − it)/b) φ (t)= G (− t)= E itY = λ,µ,ν , t ∈ R. X Y i e (ρ,σ,κ) (31) Φ λ,µ,ν (z, s, a/b)

The second set of the statistical functions include the hazard function h and the mean residual life function K.

Theorem 4 Let X ∼ HLZG. Then we have:

∗ (λ, ρ), (µ,σ) −bx 2Ψ ze bsxs−1e−ax 1 (ν, κ) h(x)=   (32) Γ(s) (ρ,σ,κ) ξλ,µ,ν (z, s, a/b, b|x) 1 (λ) (µ) Γ(s + 1, (a + bn)x) zn K(x)= ρn σn − x. (ρ,σ,κ) ∞ s+1 (ν)κn (n + a/b) n! b Γ(s)ξλ,µ,ν (z, s, a/b, b|x) nX=0 (33)

Here p−1 −t ℜ{ } Γ(p,z)= ∞ t e dt, p >0, Zz stands for the upper incomplete Gamma function. 54 R. K. Saxena, T. K. Pog´any, R. Saxena, D. Jankov

Proof. From the hazard function formula a simple calculation gives: bs (λ, ρ), (µ,σ) K(x)= ts −at Ψ∗ z −bt t − x (ρ,σ,κ) ∞ e 2 1 e d Γ(s)ξ (z, s, a/b, b|x) Zx (ν, κ) λ,µ,ν h i

bs (λ) (µ) zn = ρn σn ts −(a+bn)t t − x. (ρ,σ,κ) ∞ ∞ e d (ν)κn n! Zx Γ(s)ξλ,µ,ν (z, s, a/b, b|x) nX=0 Further simplification leads to the asserted formula (33). 

7 Statistical parameter estimation in HLZB′ and HLZG distribution models

The statistical parameter estimation becomes one of the main tools in random ′ model identification procedures. In the study of HLZB and HLZG distribu- tions the PDFs (16) and (27) are built by higher transcendental functions such (ρ,σ,κ) as generalized Hurwitz–Lerch Zeta function Φ λ,µ,ν (z,s,a) and Fox–Wright ∗ generalized hypergeometric function 2Ψ1[z]. The power series definitions of these functions does not enable the successful implementation of the popular and efficient Maximum Likelihood (ML) parameter estimation, only the nu- ′ merical system solving can reach any result for HLZB , while ML cannot be used for HLZG distribution case, being the extrema of the likelihood function out of the parameter space. Therefore, we consider the Moment Method estimators, such that are weakly consistent (by the Khinchin’s Law of Large Numbers), also strongly consistent (by the Kolmogorov LLN) and asymptotically unbiased.

7.1 Parameter estimation in HLZB′ model ′ Assume that the considered statistical population possesses HLZB distribu- tion, that is the r.v. X ∼ f(x), (16) generates n independent, identically dis- tributed replicæ Ξ = Xj j=1,n which forms a statistical sample of the size n. We are now interested in estimating the 9-dimensional parameter  θ9 = (a,σ,κ,ρ,λ,µ,ν,z,s) or some of its coordinates by means of the sample Ξ. First we consider the PDF (16) for small z 0. For such values we get asymptotics Γ(ν) xλ−1 → f(x) ∼ x>0, (34) Γ(λ)Γ(ν − λ)(1 + x)ν Generalized Hurwitz–Lerch Zeta distributions 55 which is the familiar Beta distribution of the second kind (or Beta prime) B′(λ, ν). The moment method estimators for the remaining parameters λ > 0,ν>2 read: 2 2 Xn Xn + Xn Xn + Xn λ = 2 , ν = 2 Xn + 1 + 1, (35) Sn  Sn  where e e n n 1 2 1 X = X , S = X − X 2 n n j n n j n Xj=1 Xj=1  expressing the sample mean and the sample respectively. Let us men- tion that for ν<2, the variance of a r.v. X ∼ B′(λ, ν) does not exists, so for these range of parameters MM is senseless. The case of full range parameter estimation is highly complicated. The mo- ment method estimator can be reached by virtue of the positive integer order moments formula (22) substituting 1 n Xr = Xr 7 m , n n j r Xj=1 → r where Xn is the rth sample moment. Thus, numerical solution of the system (σ,ρ,κ−ρ; κ,κ−ρ) (−1)r(λ) Φ (z,s,a) r µ,λ+r,ν−λ−r;ν,ν−λ = Xr r = 1,9 (ρ,σ,κ) n (36) (1 − ν + λ)r Φ λ,µ,ν (z,s,a) which results in the vectorial moment estimator θ9 = (a, σ, κ, ρ, λ, µ, ν, z, s).

7.2 Parameter estimation in HLZG distributione e e e e e e e e e To achieve Gamma distribution’s PDF from the density function (27) of HLZG in a way different then (b) in Section 6, it is enough to consider the PDF (27) for a = b and small z 0. Indeed, we have bsxs−1e−bx → x>0, lim f(x)=  Γ(s) (37) z 0 0, x ≤ 0 ; →  It is well known that the moment method estimators for parameters b, s are 2 Xn Xn b = 2 , s = 2 . Sn Sn e e 56 R. K. Saxena, T. K. Pog´any, R. Saxena, D. Jankov

The general case includes the vectorial parameter

θ10 = (a,b,s,λ,ρ,µ,σ,ν,κ,z) . First we show a kind of recurrence relation for the fractional order moments between distant neighbours.

Theorem 5 Let 0 ≤ t ≤ r be nonnegative real numbers, and mr denotes the fractional positive rth order moment of a r.v. X ∼ HLZG. Then it holds true

mr = mr−t · mt. (38) Proof. It is not difficult to prove (ρ,σ,κ) (s) Φ (z,s + r, a/b) m = r λ,µ,ν r br (ρ,σ,κ) Φλ,µ,ν (z, s, a/b) (ρ,σ,κ) (ρ,σ,κ) Γ(s + r) Φ (z,s + r, a/b) Γ(s + t) Φ (z,s + t, a/b) = λ,µ,ν λ,µ,ν , br−t Γ(s + t) (ρ,σ,κ) bt Γ(s) (ρ,σ,κ) Φλ,µ,ν (z,s + t, a/b) Φλ,µ,ν (z, s, a/b) which is equivalent to the assertion of the Theorem. 

Remark 2 Taking the integer order moments (29), that is mr,r ∈ N0, the recurrence relation (38) becomes a contiguous relation for distant neighbours: (ρ,σ,κ) (s + ℓ) Φ (z,s + ℓ, a/b) m = m · m = ℓ−k λ,µ,ν m (39) ℓ ℓ−k k bℓ−k (ρ,σ,κ) k Φλ,µ,ν (z,s + k, a/b) for all 0 ≤ k ≤ ℓ, k,ℓ ∈ N0.

Choosing a system of 10 suitable different equations like (38) in which mr r is substituted with Xn 7 mr, we get (ρ,σ,κ) r (s +→t) − Φ (z,s + r, a/b) X r t λ,µ,ν = n . (40) br−t (ρ,σ,κ) Xt Φλ,µ,ν (z,s + t, a/b) n However, the at least complicated case of (38) occurs at the contiguous (39) with k = 0,ℓ = 1,10, that is, by virtue of (40) we deduce the system in unknown θ10: (ρ,σ,κ) ℓ (ρ,σ,κ) ℓ (s)ℓ Φλ,µ,ν (z,s + ℓ, a/b)= b Φλ,µ,ν (z, s, a/b) Xn ℓ = 1,10. (41) The numerical solution of system (41) with respect to unknown parameter vector θ10 we call moment method estimator θ10.

e Generalized Hurwitz–Lerch Zeta distributions 57 References

[1] A. Erd´elyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Tran- scendental Functions, Vol. 1, McGraw–Hill, New York, Toronto & London, 1955.

[2] M. Garg, K. Jain, S. L. Kalla, A further study of generalized Hurwitz– Lerch Zeta function, Algebras Groups Geom., 25 (2008), 311–319.

[3] M. Garg, K. Jain, S. L. Kalla, On generalized Hurwitz–Lerch Zeta func- tion, Appl. Appl. Math., 4 (2009), 26–39.

[4] S. P. Goyal, R. K. Laddha, On the generalized Riemann–Zeta functions and the generalized Lambert transform, Gan. ita Sandesh, 11 (1997), 97– 108.

[5] F. Guess, F. Proschan, Mean residual life: theory and applications, in P. R. Krishnaiah, C. R. Rao (Eds.), Quality Control and Reliability, Handbook of 7, North-Holland, Amsterdam, 1988.

[6] P. L. Gupta, R. C. Gupta, S. H. Ong, H. M. Srivastava, A class of Hurwitz–Lerch Zeta distribution and their applications in reliability, App. Math. Comput., 196 (2008), 521–532.

[7] R. C. Gupta, S. N. U. A. Kirmam, H. M. Srivastava, Local dependence function for some families of bivariate distributions and total positivity, App. Math. Comput., 216 (2010), 1267–1279.

[8] N. L. Johnson, S. Kotz, Distribution in Statistics: Continuous Distributions, Vol. 1, John Wiley and Sons, New York, 1970.

[9] N. L. Johnson, S. Kotz, Distribution in Statistics: Continuous Univariate Distributions, Vol. 2, John Wiley and Sons, New York, 1970.

[10] N. L. Johnson, S. Kotz, N. Balakrishnan, N., Continuous Univariate Dis- tributions, Vol. 2 (2nd Edition), John Wiley and Sons, 1995.

[11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applicatios of Fractioal Differential Equatios; North–Holland Mathematical Studies, Vol. 204, Elsevier (North–Holland) Science Publishers, Amsterdam, London and New York, 2006. 58 R. K. Saxena, T. K. Pog´any, R. Saxena, D. Jankov

[12] S. D. Lin, H. M. Srivastava, Some families of Hurwitz–Lerch Zeta func- tions and associated fractional derivative and other integral representa- tions, App. Math. Comput., 154 (2004), 725–733.

[13] A. M. Mathai, R. K. Saxena, A generalized Probability distribution, Univ. National Tucuman Rev. Series (A), 21 (1971), 193–202.

[14] A. M. Mathai, R. K. Saxena, Generalized Hypergeometric Fuctions with Applications in Statistics and Physical Sciences, Springer–Verlag, New York, 1973.

[15] A. M. Mathai, R. K. Saxena, The H–functions with Applications in Statis- tics and Other Disciplines, John Wiley and Sons Inc. (Halsted Press), New York, 1978.

[16] S. Nadarajah, S. Kotz, A generalized Planck distribution, Test, 15 (2006), 361–374.

[17] K. Nishimoto, C. E.–E. Yen, M.–L. Lin, Some integral forms for a gener- alized Zeta function, J. Fract. Calc., 22 (2002), 91–97.

[18] R. K. Saxena, On a unified inverse Gaussian distribution, Proc. 8th In- ternational Conference of the Society for Special Functions and Their Applications (SSFA) Palai (India), pp. 51–65, 2007.

[19] R. K. Saxena, S. P. Dash, The distribution of the linear combination and of the ratio of product of independent random variables associated with an H–function, Vijnana Parishad Anusandhan Patrika, 22 (1979), 57–65.

[20] R. K. Saxena, S. L. Kalla, On a unified , Appl. Math. Comput., 182 (2006), 325–332.

[21] R. K. Saxena, S. L. Kalla, On a generalization of Kratzel function and associated inverse Gaussian distribution, Algebras, Groups Geom., 24 (2007), 303–324.

[22] R. K. Saxena, R. Saxena, An extension of Kr¨atzel function and associated inverse Gaussian probability distributions occuring in reliability theory, Int. J. Comput. Math. Sci., 3 (2009), 189–198.

[23] H. M. Srivastava, J. Choi Series Associated with the Zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001. Generalized Hurwitz–Lerch Zeta distributions 59

[24] H. M. Srivastava, R. K. Saxena, T. K. Pog´any, R. Saxena, Integral and computational representations of the extended Hurwitz–Lerch Zeta func- tion, Integral Trasforms Spec. Funct., 22 (2011), 487–506.

[25] H. M. Srivastava, Z.ˇ Tomovski, Fractional calculus with an integral oper- ator containing a generalized Mittag–Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210.

[26] E. W. Stacy, A generalization of the Gamma distribution, Ann. Math. Stat., 33 (1962), 1187–1192.

[27] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis: An In- troduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Proncipal Transcendental Functions, Fourth edition, Cambridge University Press, Cambridge, 1927.

[28] C.–E. Yen, M.–L. Lin, K. Nishimoto, An integral form for a generalized Zeta function, J. Fract. Calc., 23 (2002), 99–102.

Received: December 2, 2010