Separation of Fluoride Residue Arising from Fluoride Volatility Recovery of Uranium from Spent Nuclear Fuel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemistry: the Molecular Nature of Matter and Change
REVISED CONFIRMING PAGES The Components of Matter 2.1 Elements, Compounds, and 2.5 The Atomic Theory Today 2.8 Formula, Name, and Mass of Mixtures: An Atomic Overview Structure of the Atom a Compound 2.2 The Observations That Led to Atomic Number, Mass Number, and Binary Ionic Compounds an Atomic View of Matter Atomic Symbol Compounds That Contain Polyatomic Mass Conservation Isotopes Ions Definite Composition Atomic Masses of the Elements Acid Names from Anion Names Multiple Proportions 2.6 Elements: A First Look at the Binary Covalent Compounds The Simplest Organic Compounds: Dalton’s Atomic Theory Periodic Table 2.3 Straight-Chain Alkanes Postulates of the Atomic Theory Organization of the Periodic Table Masses from a Chemical Formula How the Atomic Theory Explains Classifying the Elements Representing Molecules with a the Mass Laws Compounds: An Introduction 2.7 Formula and a Model to Bonding 2.4 The Observations That Led to Mixtures: Classification and the Nuclear Atom Model The Formation of Ionic Compounds 2.9 Separation Discovery of the Electron and The Formation of Covalent An Overview of the Components of Its Properties Compounds Matter Discovery of the Atomic Nucleus (a) (b) (right) ©Rudy Umans/Shutterstock IN THIS CHAPTER . We examine the properties and composition of matter on the macroscopic and atomic scales. By the end of this chapter, you should be able to • Relate the three types of matter—elements or elementary substances, compounds, and mixtures—to the simple chemical entities that they comprise—atoms, ions, and molecules; -
Ionic Conductivity of Calcium and Strontium Fluorides
https://ntrs.nasa.gov/search.jsp?R=19670008817 2020-03-24T02:21:12+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server IONIC CONDUCTIVITY OF CALCIUM AND STRONTIUM FLUORIDES I \ by William L. Fielder i \ i Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. FEBRUARY 1967 TECH LIBRARY KAFB, NM 0130483 IONIC CONDUCTIVITY OF CALCIUM AND STRONTIUM FLUORIDES By William L. Fielder Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Cleoringhouse for Federal Scientific and Technical Information Springfield, Virginio 22151 - Price $1.00 I IONIC CONDUCTIVITY OF CALCIUM AND STRONTIUM FLUORIDES by William L. Fielder Lewis Research Center SUMMARY The conductivities of single crystals of calcium and strontium fluoride were deter mined. In the extrinsic region (impurity controlled), the specific conductivity of each crys tal may differ. The extrinsic conductivities KI for the normal process of point-defect migration for two calcium fluoride (CaF2) crystals (A and B) between 430' and 535' C were as follows (in ohm-' cm-l): for A, KI = 1.11*0. O1xlO-l exp - (16 50&100/RT) and for B, KI = 1.21*0. OIXIO-l exp - (16 500*100/RT) where R is the gas constant (cal/(deg)(mole)) and T is the absolute temperature (deg). The extrinsic conductivity of strontium fluoride (SrF2) between 360' and 410' C was KI = 1.22&0.05X10-2 exp - (17 40&900/RT). Only one intrinsic region was observed for two calcium fluoride crystals between 645' and 830' C or for strontium fluoride between 580' and 760' C. -
Properties of Selected Radioisotopes
CASE FILE COPY NASA SP-7031 Properties of Selected Radioisotopes A Bibliography PART I: UNCLASSIFIED LITERATURE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA SP-7031 PROPERTIES OF SELECTED RADIOISOTOPES A Bibliography Part I: Unclassified Literature A selection of annotated references to technical papers, journal articles, and books This bibliography was compiled and edited by DALE HARRIS and JOSEPH EPSTEIN Goddard Space Flight Center Greenbelt, Maryland Scientific and Technical Information Division / OFFICE OF TECHNOLOGY UTILIZATION 1968 USP. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. PREFACE The increasing interest in the application of substantial quantities of radioisotopes for propulsion, energy conversion, and various other thermal concepts emphasizes a need for the most recent and most accurate information available describing the nuclear, chemical, and physical properties of these isotopes. A substantial amount of progress has been achieved in recent years in refining old and developing new techniques of measurement of the properties quoted, and isotope processing. This has resulted in a broad technological base from which both the material and information about the material is available. Un- fortunately, it has also resulted in a multiplicity of sources so that information and data are either untimely or present properties without adequately identifying the measurement techniques or describing the quality of material used. The purpose of this document is to make available, in a single reference, an annotated bibliography and sets of properties for nine of the more attractive isotopes available for use in power production. Part I contains all the unclassified information that was available in the literature surveyed. Part II is the classified counterpart to Part I. -
System Studies of Fission-Fusion Hybrid Molten Salt Reactors
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS Robert D. Woolley University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Woolley, Robert D., "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert D. Woolley entitled "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Laurence F. Miller, Major Professor We have read this dissertation and recommend its acceptance: Ronald E. Pevey, Arthur E. Ruggles, Robert M. Counce Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Robert D. -
RFI) DE-FOA-0002533 on Cleaning up Radioisotope Enventories (CURIE)
U.S. Department of Energy Advanced Research Projects Agency – Energy (ARPA-E) Request for Information (RFI) DE-FOA-0002533 on Cleaning Up RadioIsotope Enventories (CURIE) Introduction The purpose of this RFI is to solicit input for a potential future ARPA-E research program focused on the development of technologies that would enable the effective management of the Nation’s commercial used nuclear fuel (UNF). The goals of this RFI are to (1) solicit information about reactor fuel needs for both the current commercial light-water reactor (LWR) fleet and future advanced reactors, and (2) seek insights into technology gaps and/or cost drivers that may be hindering economical recycling of existing LWR UNF.1 This information is needed to help ARPA-E identify ways in which the Nation’s roughly 86,000 MTU2 inventory of UNF, which has been increasing by approximately 2,000 MTU per year, can best be recycled to support current and advanced reactor fuel needs. Such activities are consistent with ARPA-E’s statutory goals, which include supporting the development of transformative solutions for addressing UNF.3 ARPA-E is interested in information about technologies with the potential to make recycling UNF at least as economical, safe, and secure as the current once-through fuel cycle.4 Such technologies would enable a UNF treatment facility to be economically constructed, managed, and operated; yield an actinide product that is cost-competitive with natural uranium (U) obtained from traditional mining and milling; and generate significantly lower -
12.2% 130,000 155M Top 1% 154 5,300
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,300 130,000 155M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Fast-Spectrum Fluoride Molten Salt Reactor (FFMSR) with Ultimately Reduced Radiotoxicity of Nuclear Wastes Yasuo Hirose Abstract A mixture of NaF-KF-UF4 eutectic and NaF-KF-TRUF3 eutectic containing heavy elements as much as 2.8 g/cc makes a fast-spectrum molten salt reactor based upon the U-Pu cycle available without a blanket. It does not object breeding but a stable operation without fissile makeup under practical contingencies. It is highly integrated with online dry chemical processes based on “selective oxide precipita- tion” to create a U-Pu cycle to provide as low as 0.01% leakage of TRU and nominated as the FFMSR. This certifies that the radiotoxicity of HLW for 1500 effective full power days (EFPD) operation can be equivalent to 405 tons of depleted uranium after 500 years cooling without Partition and Transmutation (P&T). A certain amount of U-TRU mixture recovered from LWR spent fuel is loaded after the initial criticality until U-Pu equilibrium but the fixed amount of 238U only thereafter. -
Fuel Cycle Processes Directed Self-Study Course! This Is the Third of Nine Modules Available in This Directed Self-Study Course
MODULE 3.0: URANIUM CONVERSION Introduction Welcome to Module 3.0 of the Fuel Cycle Processes Directed Self-Study Course! This is the third of nine modules available in this directed self-study course. The purpose of this module is to be able to discuss the NRC regulations of and describe conversion facilities; identify the basic steps of the dry fluoride volatility conversion process and contrast with the wet acid digestion conversion process; identify sampling and measurement activities for the dry conversion process and the radiological and non-radiological hazards associated with the dry conversion process. This self-study module is designed to assist you in accomplishing the learning objectives listed at the beginning of the module. There are five learning objectives in this module. The module has self-check questions and activities to help you assess your understanding of the concepts presented in the module. Before you Begin It is recommended that you have access to the following materials: ◙ Trainee Guide ◙ Sequoyah Fuels Accident Slides (on CD accompanying course manual) ◙ “Release of UF6 from a Ruptured Model 48Y Cylinder at Sequoyah Fuels Corporation Facility: Lessons-Learned Report," U.S. Nuclear Regulatory Commission, NUREG-1198, June 1986. ◙ “Assessment of the Public Health Impact from the Accidental Release of UF6 at the Sequoyah Fuels Corporation Facility at Gore, Oklahoma," U.S. Nuclear Regulatory Commission, NUREG-1189, Vol. 1, March 1986. Complete the following prerequisites: ◙ Module 1.0: Overview of the Nuclear Fuel Cycle How to Complete this Module 1. Review the learning objectives. 2. Read each section within the module in sequential order. -
Estimation of Alkali Metal Mole Percent and Weight of Calcined Solids for ICPP Calcine
INEL-95/0184 Estimation of Alkali Metal Mole Percent and Weight of Calcined Solids for ICPP Calcine B. H. O'Brien Published March 1995 Idaho National Engineering Laboratory High-Levei Waste Engineering and Project Management Department Lockheed Idaho Technologies Company Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Under DOE Idaho Operations Office Contract DE-AC07-94ID13223 DISTRIBUTION OF THIS DCCl-^T IS UNLIMITED (j$ I DISCLAIMER Portions of this document may be illegible eiectronic image products, images are produced from the best avaiiabie original document. ABSTRACT An updated method is given for estimation of the weight of calcined solids and volume reduction factor for calcine, and mole percent sodium plus potassium in calcine produced from radioactive waste in a fluidized-bed calciner at the Idaho Chemical Processing Plant (ICPP). It incorporates new information on a calcine chemistry from a study by K. N. Brewer and G. F. Kessinger in which they determined the compounds formed during calcination by both high temperature thermodynamic equilibrium calculations and by analyses of pilot-plant calcines. An explanation of the assumptions made in the calculations, along with several example calculations and comparisons with the previous calculation methods are included. This method allows calculation of the heat generation rate and sodium content of the calcine, which are used to determine the suitability of the calcine for storage in the ICPP bin sets. Although this method accurately predicts the weight of calcine and mole percent Na+K for its intended purpose, the compounds predicted should only be used as a first approximation for other purposes since the calculation does not incorporate all of the compounds, such as mixed-metal oxides, which may form during calcination. -
Actinide Separation Chemistry in Nuclear Waste Streams and Materials, December 1997
NEA/NSC/DOC(97)19 NEA NUCLEAR SCIENCE COMMITTEE ACTINIDE SEPARATION CHEMISTRY IN NUCLEAR WASTE STREAMS AND MATERIALS December 1997 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT FOREWORD The separation of actinide elements from various waste materials is a significant problem facing developed countries. The issue arises primarily because of the potential long-term hazard of many of the actinides, but is also due to the regulatory requirements associated with actinide waste disposal, which are different from those associated with other radioactive wastes. The different regulations are in turn related to the different health hazards and generally longer half lives of the actinides. This issue is of continuing interest to the OECD/NEA Member countries primarily in relation to waste produced within power station fuel recycle. Similar problems exist for waste produced in the past as a result of nuclear weapons production programmes and wastes likely to be produced in the future emerging from operations required for waste disposal. The Nuclear Science Committee, representing the interests of the basic R&D in the OECD/NEA Member countries, has established a task force of experts in actinide chemistry to review the current and developing separation techniques and chemical processes of interest in separating actinides. This task force was commissioned with the preparation of a report on the subject. The task force members are listed in Annex 1. This report is intended to provide a timely and representative guide to technical journals and other sources of separation chemistry information on the actinide elements. An important objective is to provide information that may be used to conserve energy and protect humans and the environment. -
Strontium Fluoride (Srf2)
Strontium Fluoride (SrF2) MICHAEL E, THOMAS Applied Physics Laboratory The Johns Hopkins University Laurel, Maryland Strontium fluoride offers a wide range of transparency, from the ultravio- let to the long-wave infrared (0.13 to 11 /zm), with low reflectance loss and low dispersion. This combination of broad transparency and low dispersion is rare in optical-window materials used in infrared systems. Like BaF 2, it allows experimenters to conveniently perform initial system alignment in the visible and then switch to the IR with only minor correction of the optical components. Furthermore, strontium fluoride has good surface hardness (Knoop scale 150 kg/mm 2) and is not hygroscopic. It has a flexure strength between those of CaF 2 (90 MPa) and BaF 2 (27 MPa). Strontium fluoride is a cubic crystal with the fluorite structure, space group Fm3m (Oh),5 with four formula units per unit cell. The lattice constant is 5.7996 A, giving a theoretical density of 4.277 g/cm 3. The atomic arrange- ment is strontium atoms occupy the 4(a) sites (m3m or Oh symmetry), and the fluorine atoms occupy the 8(c) sites (43m or Ta symmetry). Melting point is 1750 K. Ultraviolet reflectance of bulk SrF 2 was measured by Ganin et al. [ 1] up to 20 eV at room temperature and liquid-helium temperature. Rubloff [2] measured the room-temperature reflectance up to 36 eV. Unfortunately, these measurements are not reduced to optical constants. However, similar mea- surements from 10 to 36 eV by Nisar and Robin [3] have been reduced to optical constants using the Kramers-Kronig relation. -
Unit 10 Chemical Formulas and Valence
Unit 10 Chemical Formulas and Valence INTRODUCTION The formula of a compound describes the exact composition of a molecule of the compound. These formulas oftentimes were determined by tedious analysis of the compound itself. A simpler method of determining the chemical formula of a compound is to use the concept of valence. This method makes it much easier to predict the formulas for compounds even if we do not have a sample of the compound to physically work with. OBJECTIVES 1. The student will define or identify the terms associated with valence as described in this unit. 2. The student will assign valence to atoms and radicals using the rules given in this unit and a Periodic Chart. 3. The student will use valence to write the correct formula for a compound. DISCUSSION A. Valence The valence of an atom or group of atoms is a number that indicates the charge that an atom or group of atoms has when involved in a compound. The charge may be positive or negative and have values as low as a negative four (-4) to a positive seven (+7). Atoms or groups of atoms with a positive valence are called cations. Atoms or groups of atoms with a negative valence are called anions. The valence of an atom is related to the number of valence electrons and thus to the position of an atom on the Periodic Chart. The valence is written as a superscript to the atom. The number is preceded by a sign to indicate whether the valence is positive (+) or negative (-). -
Feasibility Study for the Processing of Hanford Site Cesium and Strontium Isotopic Sources in the Hanford Waste Vitrification Plant
WHC-EP-0460 Feasibility Study for the Processing of Hanford Site Cesium and Strontium Isotopic Sources in the Hanford Waste Vitrification Plant Prepared for the U.S. Department of Energy Office of Environmental Restoration and Waste Management Westinghouse ® HanfOIti Company Richland. Washington Hanford Operations and Engineering Contractor for the U.S. Department of Energy under Contract DE-AC06-87RL10930 Approved for Public Release DlfnmUTlON OF THIS OOCUBEMT IS UMLlWTEtt LEGAL DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that Its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United Stales Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy. Available in paper copy and microfiche. Available to the U.S. Department of Energy and its contractors from Office of Scientific and Technical Information P.O.