Florida Energy Systems Consortium (FESC)

Total Page:16

File Type:pdf, Size:1020Kb

Florida Energy Systems Consortium (FESC) Florida Energy Systems Consortium (FESC) A proposal submitted to the Florida Emerging Technology Commission By the University of Florida, Central Florida, South Florida, and Florida State University Date of Submission: December 3, 2007 Period of Performance: 3 years Total Cost: $40,000,000 Abstract: A super Center of Excellence is proposed to address energy generation in Florida and its distribution and efficient use while growing the State’s energy-related industry. A systems approach will be taken in partnership industry to demonstrate innovative technologies in addition to conducting programs in energy education and outreach. Principal Technical Personnel: University of Florida (Lead) Dr. Tim Anderson, Interim Director, (352)-392-0946, [email protected] Dr. Lonnie Ingram, (352) 392-8176, [email protected] Dr. Eric Wachsman, (352) 846-2991, [email protected] University of Central Florida Dr. Issa Batarseh, (407) 823-0185, [email protected] Dr. Philip Fairey, (321) 638-1005, [email protected] Dr. Jim Fenton, (321) 638-1002, [email protected] University of South Florida Dr. Alex Domijan, (813) 974-5416, [email protected] Dr. Yogi Goswami, (813) 974-0956, [email protected] Dr. Lee Stefanakos, (813) 974-4413, [email protected] Florida State University Dr. David Cartes, (850) 645-1184, [email protected] Dr. Anjaneyulu Krothapalli, (850) 644-5885, [email protected] Mr. Richard Meeker, (850) 645-1711, [email protected] Principal Business Personnel: Dr. Thomas E. Walsh, Director of Sponsored Research University of Florida, Gainesville, FL 32611-5500 Phone: 352-846-1839; Fax: 352-392-3516; [email protected] Florida Energy Systems Consortium Center of Excellence Proposal i Table of Contents Executive Summary....................................................................................................................... iv Industrial Need and Outcome ..................................................................................................... v University Capabilities.............................................................................................................. vii Plan for Self-Sufficiency........................................................................................................... vii Organizational Plan..................................................................................................................viii Planned Budget ........................................................................................................................viii 1. Vision, Leadership, and Research Focus .................................................................................... 1 Rationale and Societal Need....................................................................................................... 1 Energy Systems Vision................................................................................................................. 2 Leadership................................................................................................................................... 3 Research Focus........................................................................................................................... 3 Thrust 1. Developing Florida's Biomass Resources ................................................................... 3 Thrust 2. Harnessing Florida's Solar Resources........................................................................ 4 Thrust 3. Ensuring Nuclear Energy & Carbon Constrained Technologies for Electric Power .4 Thrust 4. Enhancing Energy Efficiency and Conservation......................................................... 5 Thrust 5. Securing our Energy Delivery Infrastructure.............................................................. 5 Thrust 6. Energy Systems and their Environmental and Economic Impacts – overarching....... 5 Task 1. Integrated Florida Bio-Energy Industry ..................................................................... 6 Task 2. An Integrated Sustainable Transportation System...................................................... 8 Task 3. Solar Thermal Power for Bulk Power and Distributed Generation............................ 8 Task 4. Si Photovolatics from Low-cost, Florida-derived Si Feedstock................................. 9 Task 5. Florida Based Low Cost Manufacture of Photovoltaic (PV) Systems..................... 10 Task 6. Advanced PV Device Program................................................................................. 10 Task 7. PV Energy Conversion and System Integration....................................................... 10 Task 8. Integrated PV/Storage and PV/Storage/Lighting Systems ....................................... 11 Task 9. Solar and Biomass Fuels to Fuel Cell Emergency Power Backup........................... 11 Task 10. Energy Efficient Building Technologies and Zero Energy Homes ........................ 12 Task 11. Establishing an Efficient and Reliable Energy Delivery Infrastructure ................. 12 Task 12. Carbon Capture and Sequestration......................................................................... 12 Task 13. Clean Drinking Water using Advanced Solar Energy Technologies ...................... 13 2. Economic Opportunity.............................................................................................................. 13 Technology Innovation and Transfer ........................................................................................ 13 Impact on Workforce ................................................................................................................. 14 3. Management and Infrastructure ................................................................................................ 16 Education & Outreach Plan ..................................................................................................... 17 Maturity of Existing Programs and Available Capital Facilities ............................................. 17 4. Leveraging Resources and Other Collaboration...................................................................... 18 Partnership with Industries, National Labs, and Other Institutions: ....................................... 19 Advisory Council: ..................................................................................................................... 19 Cost Share and Investments from Industry:.............................................................................. 19 Plan for Self Sustainability ....................................................................................................... 19 Letters of Support ....................................................................................................................... 106 Florida Energy Systems Consortium Center of Excellence Proposal ii List of Tables Table 1: Summary of Project Funding.........................................................................................viii Table 2: Crosswalk ........................................................................................................................ ix Table 3: Accountability Measures for UF, UCF,USF, & FSU....................................................... 3 Table 4: Thin film PV efficiency.................................................................................................. 10 Table 5: University Resources Dedicated to FESC ...................................................................... 18 List of Figures Figure 1: World Oil production for various amounts of recoverable resources (Source: A. Bartlett, mathematical Geology,32,2002)....................................................................................... 1 Figure 2: Integrated renewable energy systems.............................................................................. 6 Figure 3: Integrated bio-energy industry ........................................................................................ 6 Figure 4: Integrated fuel cell-battery hybrid................................................................................... 8 Figure 5: From today’s centralized PV inverter to PlugN’Gen AC modules: a paradigm change. ....................................................................................................................................................... 11 Figure 6: Community-based energy system ................................................................................. 12 Figure 7: Jobs per unit of energy capacity for various power production technologies............... 15 Figure 8: Organizational chart ...................................................................................................... 16 Florida Energy Systems Consortium Center of Excellence Proposal iii Executive Summary Energy may be the defining issue of this century. Our quality of life, economy, standard of living, and security depend on clean, affordable, and reliable energy. The limited supply of fossil energy, its accelerated consumption, impact on global warming, and the dependence on its supply from unstable countries are major U.S. economic and security issues. Moreover, due to Florida’s unique coastal geography and southern latitude, it is the state with both the most to gain by harnessing its abundant renewable energy resources and the most to lose if it doesn’t. Fortunately, the state is rich in renewable energy resources, particularly biomass and solar, and has over 40 years experience operating nuclear power facilities. These facts were clearly
Recommended publications
  • Power Quality Evaluation for Electrical Installation of Hospital Building
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 12, 2019 Power Quality Evaluation for Electrical Installation of Hospital Building Agus Jamal1, Sekarlita Gusfat Putri2, Anna Nur Nazilah Chamim3, Ramadoni Syahputra4 Department of Electrical Engineering, Faculty of Engineering Universitas Muhammadiyah Yogyakarta Yogyakarta, Indonesia Abstract—This paper presents improvements to the quality of Considering how vital electrical energy services are to power in hospital building installations using power capacitors. consumers, good quality electricity is needed [11]. There are Power quality in the distribution network is an important issue several methods to correct the voltage drop in a system, that must be considered in the electric power system. One namely by increasing the cross-section wire, changing the important variable that must be found in the quality of the power feeder section from one phase to a three-phase system, distribution system is the power factor. The power factor plays sending the load through a new feeder. The three methods an essential role in determining the efficiency of a distribution above show ineffectiveness both in terms of infrastructure and network. A good power factor will make the distribution system in terms of cost. Another technique that allows for more very efficient in using electricity. Hospital building installation is productive work is by using a Bank Capacitor [12]. one component in the distribution network that is very important to analyze. Nowadays, hospitals have a lot of computer-based The addition of capacitor banks can improve the power medical equipment. This medical equipment contains many factor, supply reactive power so that it can maximize the use electronic components that significantly affect the power factor of complex power, reduce voltage drops, avoid overloaded of the system.
    [Show full text]
  • Introduction to Power Quality
    CHAPTER 1 INTRODUCTION TO POWER QUALITY 1.1 INTRODUCTION This chapter reviews the power quality definition, standards, causes and effects of harmonic distortion in a power system. 1.2 DEFINITION OF ELECTRIC POWER QUALITY In recent years, there has been an increased emphasis and concern for the quality of power delivered to factories, commercial establishments, and residences. This is due to the increasing usage of harmonic-creating non linear loads such as adjustable-speed drives, switched mode power supplies, arc furnaces, electronic fluorescent lamp ballasts etc.[1]. Power quality loosely defined, as the study of powering and grounding electronic systems so as to maintain the integrity of the power supplied to the system. IEEE Standard 1159 defines power quality as [2]: The concept of powering and grounding sensitive equipment in a manner that is suitable for the operation of that equipment. In the IEEE 100 Authoritative Dictionary of IEEE Standard Terms, Power quality is defined as ([1], p. 855): The concept of powering and grounding electronic equipment in a manner that is suitable to the operation of that equipment and compatible with the premise wiring system and other connected equipment. Good power quality, however, is not easy to define because what is good power quality to a refrigerator motor may not be good enough for today‟s personal computers and other sensitive loads. 1.3 DESCRIPTIONS OF SOME POOR POWER QUALITY EVENTS The following are some examples and descriptions of poor power quality “events.” Fig. 1.1 Typical power disturbances [2]. ■ A voltage sag/dip is a brief decrease in the r.m.s line-voltage of 10 to 90 percent of the nominal line-voltage.
    [Show full text]
  • 2015-17 Biennial Energy Plan
    2015-17 2015-17 STATE OF OREGON BIENNIAL ENERGY PLAN Oregon Department of Energy 625 Marion Street N.E. Salem, Oregon 97301 Oregon.gov/energy Oregon Department of Energy 1-800-221-8035 625 Marion Street N.E. 503-378-4040 Salem, Oregon 97301 Oregon.gov/energy 1-800-221-8035 503-378-4040 State of Oregon Biennial Energy Plan 2015-17 State of O n Energy lan Oregon Department of Energy 625 Marion St. NE Salem, OR 97301 503-378-4040 or toll-free in Oregon 1-800-221-8035 www.oregon.gov/energy 2 State of Oregon Biennial Energy Plan 2015-17 TABLE OF CONTENTS INTRODUCTION ............................................................................................4 ENERGY MATTERS ........................................................................................6 ENERGY SUPPLY AND DEMAND .................................................................. 11 ENERGY TRENDS AND ISSUES ..................................................................... 29 REDUCING ENERGY COSTS .......................................................................... 40 Appendix A – Energy Glossary ................................................. 47 Appendix B – Energy Legislation .............................................. 54 Appendix C – Final BETC Awards by County ............................. 68 Appendix D – Success Stories ................................................... 75 Appendix E – Government-to-Government Report .................. 77 Appendix F – Oregon’s Electric Utilities ................................... 81 3 State of Oregon Biennial Energy
    [Show full text]
  • ENERGY by the NUMBERS Been Analyzed Toprovide Insights
    S Energy by the Numbers focuses on the metrics and data available to track how Oregon produces, purchases, and uses various types of energy. Like the 2018 report, this includes energy use data by resource and by sector with data on electricity, transportation energy, and direct fuel use. Where possible, data showing how Oregon’s energy system has changed over time has been included to provide context and history. New to this report is the energy flow diagram in Oregon, which is a visual summary of how energy is produced, imported, and used. This chart follows each resource through the energy flow. We also discuss energy production — where and what kind of energy Oregon produces, where and how we generate electricity, and what direct use and transportation fuels are produced in state. Oregon is a leading producer of renewable energy and this section explains why and how. Readers will find data on what Oregon spends on energy, how energy costs burden Oregonians differently across the state, and what the energy industry gives back to Oregon in terms of jobs. The section also demonstrates how energy efficiency continues to serve as an important resource for Oregon. It concludes with highlights on the four end use sectors: residential, commercial, industrial, and transportation, including energy use, expenditures, and GHG emissions – and how each sector uses energy to provide goods and services. ENERGY BY THE NUMBER BY ENERGY Trends and What’s New: • Oregon has vast energy efficiency potential, but in the last two years the region hasn’t been meeting the Northwest Power and Conservation Council’s Seventh Power Plan goals for savings in electricity.
    [Show full text]
  • ENA Customer Guide to Electricity Supply
    ENA Customer Guide to Electricity Supply Energy Networks Association Limited ENA Customer Guide to Electricity Supply August 2008 DISCLAIMER This document refers to various standards, guidelines, calculations, legal requirements, technical details and other information. Over time, changes in Australian Standards, industry standards and legislative requirements, as well as technological advances and other factors relevant to the information contained in this document may affect the accuracy of the information contained in this document. Accordingly, caution should be exercised in relation to the use of the information in this document. The Energy Networks Association (ENA) accepts no responsibility for the accuracy of any information contained in this document or the consequences of any person relying on such information. Correspondence should be addressed to: The Chief Executive Energy Networks Association Level 3, 40 Blackall Street Barton ACT 2600 E: [email protected] T: +61 2 6272 1555 W: www.ena.asn.au Copyright © Energy Networks Association 2008 All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the Association. Published by the Energy Networks Association, Level 3, 40 Blackall Street, Barton, ACT 2600. Contents THE PURPOSE OF THIS GUIDE......................................................................................... 1 INTRODUCTION ................................................................................................................
    [Show full text]
  • Power Quality Standards
    Pacific Gas and Electric Company Power Quality Standards IEEE Standard 141-1993, Recommended Practice for Electric Power Distribution for Industrial Plants, aka the Red Book. A thorough analysis of basic electrical-system considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. IEEE Standard 142-1991, Recommended Practice for Grounding of Industrial and Commercial Power Systems, aka the Green Book. Presents a thorough investigation of the problems of grounding and the methods for solving these problems. There is a separate chapter for grounding sensitive equipment. IEEE Standard 242-1986, Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems, aka the Buff Book. Deals with the proper selection, application, and coordination of the components which constitute system protection for industrial plants and commercial buildings. IEEE Standard 446-1987, Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications, aka the Orange Book. Recommended engineering practices for the selection and application of emergency and standby power systems. It provides facility designers, operators and owners with guidelines for assuring uninterrupted power, virtually free of frequency excursions and voltage dips, surges, and transients. IEEE Standard 493-1997, Recommended Practice for Design of Reliable Industrial and Commercial Power Systems, aka the Gold Book. The fundamentals of reliability analysis as it applies to the planning and design of industrial and commercial electric power distribution systems are presented.
    [Show full text]
  • Power Quality Improvement in Smart Grids Using Electric Vehicles
    IET Electrical Systems in Transportation Review Article ISSN 2042-9738 Power quality improvement in smart grids Received on 5th May 2018 Revised 30th October 2018 using electric vehicles: a review Accepted on 12th March 2019 E-First on 11th April 2019 doi: 10.1049/iet-est.2018.5023 www.ietdl.org Abdollah Ahmadi1, Ahmad Tavakoli2, Pouya Jamborsalamati3, Navid Rezaei4, Mohammad Reza Miveh5 , Foad Heidari Gandoman6,7, Alireza Heidari1, Ali Esmaeel Nezhad8 1Australian Energy Research Institute and School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2032, Australia 2Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, Australia 3School of Engineering, University of Tehran, Tehran, 14174-66191, Iran 4Department of Electrical Engineering, University of Kurdistan, Sanandaj 66177-15177, Iran 5Department of Electrical Engineering, Tafresh University, Tafresh, 39518-79611, Iran 6Research group MOBI – Mobility, Logistics, and Automotive Technology Research Center, Vrije Universiteit Brussel, Belgium 7Flanders Make, 3001 Heverlee, Belgium 8Department of Electrical, Electronic, and Information Engineering, University of Bologna, Italy E-mail: [email protected] Abstract: The global warming problem together with the environmental issues has already pushed the governments to replace the conventional fossil-fuel vehicles with electric vehicles (EVs) having less emission. This replacement has led to adding a huge number of EVs with the capability of connecting to the grid. It is noted that the presence of such vehicles may introduce several challenges to the electrical grid due to their grid-to-vehicle and vehicle-to-grid capabilities. In between, the power quality issues would be the main items in electrical grids highly impacted by such vehicles.
    [Show full text]
  • The Seven Types of Power Problems
    The Seven Types of Power Problems White Paper 18 Revision 1 by Joseph Seymour Contents > Executive summary Click on a section to jump to it Introduction 2 Many of the mysteries of equipment failure, downtime, software and data corruption, are the result of a prob- Transients 4 lematic supply of power. There is also a common problem with describing power problems in a standard Interruptions 8 way. This white paper will describe the most common types of power disturbances, what can cause them, Sag / undervoltage 9 what they can do to your critical equipment, and how to Swell / overvoltage 10 safeguard your equipment, using the IEEE standards for describing power quality problems. Waveform distortion 11 Voltage fluctuations 15 Frequency variations 15 Conclusion 18 Resources 19 Appendix 20 RATE THIS PAPER white papers are now part of the Schneider Electric white paper library produced by Schneider Electric’s Data Center Science Center [email protected] The Seven Types of Power Problems Introduction Our technological world has become deeply dependent upon the continuous availability of electrical power. In most countries, commercial power is made available via nationwide grids, interconnecting numerous generating stations to the loads. The grid must supply basic national needs of residential, lighting, heating, refrigeration, air conditioning, and transporta- tion as well as critical supply to governmental, industrial, financial, commercial, medical and communications communities. Commercial power literally enables today’s modern world to function at its busy pace. Sophisticated technology has reached deeply into our homes and careers, and with the advent of e-commerce is continually changing the way we interact with the rest of the world.
    [Show full text]
  • Marine Renewable Energy and Environmental Impacts
    Acknowledgements Thank you to all of the reviewers, editors, and graphic designers that made this report possible: Jennifer DeLeon Vicki Frey Melissa Foley Madalaine Jong Kelly Keen Cy Oggins Carrie Pomeroy Erin Prahler Sarah Sugar Cover Photo Storm Surf Courtesy of James Fortman Contents Tables ........................................................................................................................................................... iv Figures .......................................................................................................................................................... iv Use of Terms ................................................................................................................................................ vi Acronyms ..................................................................................................................................................... vii Summary Table........................................................................................................................................... viii 1 Introduction ......................................................................................................................................... 1-1 2 Matrix ................................................................................................................................................. 2-1 3 Offshore Energy Potential of California and Project Siting ............................................................... 3-1 3.1 Wave Energy
    [Show full text]
  • Electric Power Quality – 12 PDH's
    Electric Power Quality – 12 PDH’s Course Description Registration Information This short course relates to electric power quality, the characteristics of maintaining rated electrical parameters in a power system. The topics PDH Available: 12 hours discussed are the main points that encompass this field in the world today including voltage sags, harmonics, momentary events, interference, and Registration: • $1,200 per person waveform distortion. These topics are studied in terms of definitions and • 20% discount for organizations with three or theoretical bases; measurement and instrumentation; circuit analysis more attendees methods; standards; sources of problems; and alternative solutions. A • 25% discount for government employees special focus on power quality issues related to solar photovoltaic and (non-utility) wind energy resources is included. The impact of solid state switched • 25% discount for university professors* loads is also described. An important objective of the short course is • 75% discount for graduate students* to acquaint the attendee with the most recent developments, issues and *University IDs required to qualify for solutions in electric power quality engineering. professor or graduate student discounts. Students need to bring: laptops or tablets to access online resources Who Should Attend and to follow class notes. Wi-Fi access is provided. Lecture slides will be provided electronically in PDF format. Power engineers familiar with basic AC circuits should attend. Although the subject of electric power quality has a mathematical base, this is not the focus of the short course: instead, applications, case histories, and new EPRI Contacts issues are discussed. Amy Feser, [email protected] Course Instructors: Jerry Hedyt, [email protected] Mark Stephens, [email protected] Meet the Instructors Gerald T.
    [Show full text]
  • 10 University of Washington
    University of Washington 10 Northwest Regional Clean Energy Innovation Partnership Workshop Seattle, Washington • August 15, 2016 Northwest Regional Clean Energy Innovation Partnership Workshop Report HOSTED BY THE UNIVERSITY OF WASHINGTON ON AUGUST 15, 2016 Northwest Region Workshop Planning Team: University of Washington, Pacific Northwest National Laboratory, Idaho National Laboratory, National Energy Technology Laboratory, Washington State University, Oregon State University, University of Oregon 10-2 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation • Volume 2 Table of Contents Executive Summary …………………………………………………………………… 2 Workshop Overview …………………………………………………………………… 6 The Northwest as a Clean Energy Leader …………………………………………………………………… 8 Panel 1: Emerging Opportunities to Accelerate Clean Energy …………………………………………………………………… 11 Panel 2: Policies and Activities to Accelerate Regional Leadership …………………………………………………………………… 14 Panel 3: Energy Innovation at Northwest Research Institutions …………………………………………………………………… 19 Panel 4: Industry for Regional-to- Global Impact …………………………………………………………………… 23 Panel 5: The Innovation Ecosystem - From Research to Startup …………………………………………………………………… 27 Leadership Speaker Series – The Future of Clean Energy …………………………………………………………………… 30 Workshop Summary …………………………………………………………………… 34 Appendix A: Workshop Agenda …………………………………………………………………… 35 Appendix B: Workshop Participants …………………………………………………………………… 39 Appendix C: Washington State Energy Profile …………………………………………………………………… 43
    [Show full text]
  • Distributed Generation: a Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia
    energies Review Distributed Generation: A Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia Jun Yin Lee 1,* , Renuga Verayiah 1, Kam Hoe Ong 1, Agileswari K. Ramasamy 1 and Marayati Binti Marsadek 2 1 Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; [email protected] (R.V.); [email protected] (K.H.O.); [email protected] (A.K.R.) 2 Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; [email protected] * Correspondence: [email protected] Received: 25 September 2020; Accepted: 20 November 2020; Published: 8 December 2020 Abstract: Electric supply is listed as one of the basic amenities of sustainable development in Malaysia. Under this key contributing factor, the sustainable development goal aims to ensure universal access to an affordable, clean, and reliable energy service. To support the generation capacity in years to come, distributed generation is conceptualized through stages upon its implementation in the power system network. However, the rapid establishment growth of distributed generation technology in Malaysia will invoke power quality problems in the current power system network. In order to prevent this, the current government is committed to embark on the development of renewable technologies with the assurance of maintaining the quality of power delivered to consumers. Therefore, this research paper will focus on the review of the energy prospect of both fossil fuel and renewable energy generation in Malaysia and other countries, followed by power quality issues and compensation device under a high renewable penetration distribution network. The issues and challenges of distributed generation are presented, with a comprehensive discussion and insightful recommendation on future work of the distributed generation.
    [Show full text]