Integration of Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests

Total Page:16

File Type:pdf, Size:1020Kb

Integration of Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests Integration of remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests Methods and Guidance from the Global Forest Observations Initiative Edition 3.0 Integration of remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests Methods and Guidance from the Global Forest Observations Initiative Edition 3.0 June 2020 Methods and Guidance from the Global Forest Observations Initiative Edition 3.0 i Table of Contents Acknowledgements ........................................................................................................................... xi Acronyms ....................................................................................................................................... xiii Explanation of Key Terms ............................................................................................................ xvii Executive Summary ........................................................................................................................ xxi Purpose and Scope ....................................................................................................................... xxiv Structure ........................................................................................................................................ xxvi Chapter 1 Institutional Arrangements ....................................................................................... 1 1.1 Foundation elements ................................................................................................................. 3 1.1.1 Institutionalisation .................................................................................................................. 3 1.1.2 Developing capacity .............................................................................................................. 6 1.1.3 External partnerships and collaboration ................................................................................ 7 1.2 Strategic elements ................................................................................................................... 14 1.2.1 Mandate ............................................................................................................................... 14 1.2.2 Identification of information needs and stakeholders .......................................................... 14 1.2.3 Effective use of resources ................................................................................................... 15 1.2.4 Communication and dissemination ...................................................................................... 17 1.3 Operational elements .............................................................................................................. 19 1.3.1 Processes .............................................................................................................................. 19 1.3.2 Information management ..................................................................................................... 22 1.3.3 Infrastructure ........................................................................................................................ 23 1.3.4 Documentation ..................................................................................................................... 30 1.3.5 Quality assurance and quality control ................................................................................. 31 1.3.6 Continuous improvement ..................................................................................................... 35 1.4 Maturing of NFMS through system representation and analysis ............................................ 36 1.4.1 System representation .......................................................................................................... 37 1.4.2 System evaluation ................................................................................................................ 38 1.4.3 Prioritisation ......................................................................................................................... 43 1.4.4 System improvement ........................................................................................................... 43 Chapter 2 Technical Design Decisions ...................................................................................... 45 2.1 Monitoring goals and scope under the UNFCCC ................................................................... 45 2.2 Reporting harmonisation ........................................................................................................ 48 2.3 Use of IPCC good practice guidance in the context of the UNFCCC .................................... 48 2.3.1 Land categories and conversions ......................................................................................... 51 2.3.2 Activity based and land based reporting ............................................................................. 53 2.3.3 Stratification ......................................................................................................................... 56 2.3.4 Methods ............................................................................................................................... 57 ii 2.3.5 Approaches .......................................................................................................................... 61 2.3.6 Tiers ..................................................................................................................................... 63 2.3.7 Pools and gases ................................................................................................................... 67 2.3.8 Time series consistency and recalculations ......................................................................... 68 2.3.9 Key category analysis .......................................................................................................... 71 2.3.10 Attribution .......................................................................................................................... 72 2.3.11 Definition of forest ............................................................................................................ 74 2.4 Integration frameworks for estimating emission and removals .............................................. 77 2.4.1 Activity data x emission/removal factor tools ..................................................................... 81 2.4.2 Fully integrated frameworks ................................................................................................ 83 2.4.2.1 Spatially-explicit methods ................................................................................................ 88 2.4.2.2 Spatially-referenced methods ............................................................................................ 88 2.4.3 Practical considerations in choosing an integration tool ...................................................... 89 2.5 REDD+ methodological considerations ................................................................................. 92 2.5.1 Estimation methods for REDD+ activities .......................................................................... 92 2.5.1.1 Estimation of emissions from deforestation ..................................................................... 93 2.5.1.2 Estimation of emissions from degradation ..................................................................... 100 2.5.1.3 Sustainable management of forests, enhancement of forest carbon stocks (within existing forest), and conservation of forest carbon stocks .......................................................................... 105 2.5.1.4 Enhancement of forest carbon stocks (afforestation of land not previously forest, reforestation of land previously converted from forest to another land use) ..................................................... 107 2.5.2 Forest Reference Emission Levels .................................................................................... 108 2.5.2.1 Consistency with the Greenhouse Gas Inventory ........................................................... 109 2.5.2.2 Types of Forest Reference Levels .................................................................................. 111 2.5.2.3 Adjustments .................................................................................................................... 115 2.5.2.4 Uncertainties ................................................................................................................... 117 2.5.2.5 Stepwise approach and updating .................................................................................... 118 2.5.2.6 Number of reference levels per Party ............................................................................. 118 2.5.2.7 Subnational Forest Reference Levels and nesting .......................................................... 119 Chapter 3 Data Sources ........................................................................................................... 123 3.1 Remotely sensed observations .............................................................................................. 124 3.1.1 Optical data ........................................................................................................................ 125 3.1.2 Synthetic Aperture Radar .................................................................................................
Recommended publications
  • Allometric Equations for Biomass Estimation of Woody Species and Organic Soil Carbon Stocks of Agroforestry Systems in West African: State of Current Knowledge
    International Journal of Research in Agriculture and Forestry Volume 2, Issue 10, October 2015, PP 17-33 ISSN 2394-5907 (Print) & ISSN 2394-5915 (Online) Allometric Equations for Biomass Estimation of Woody Species and Organic Soil Carbon Stocks of Agroforestry Systems in West African: State Of Current Knowledge Massaoudou Moussa1, Larwanou Mahamane2, Mahamane Saadou3 1Department of Natural Resources Management (DGRN), National Institute of Agricultural Research of Niger (INRAN), BP 240 Maradi, Niger 2African Forest Forum (AFF) C/o World Agroforestry Center (ICRAF), P.O. Box 30677–00100, Nairobi, Kenya 3Department of Biology, Faculty of Science, University Abdou Moumouni of Niamey, Niamey, Niger ABSTRACT Since the Kyoto Protocol, agroforestry is considered as a mitigation and adaptation tool to climate change. Agro forestry systems are nowadays the subject of many investigations all over the world. This is because of their potential for carbon sequestration and storage. The parklands are some ancient cultural systems with a wide distribution in West Africa. The contribution of these systems to climate change mitigation has to do with the organic carbon storage in soils and sequestration of atmospheric carbon. This study aims at presenting an overview of the current knowledge on soils organic carbon and allometric equations for estimating aboveground biomass in agro forestry land use systems in West Africa. Significant amounts of carbon, ranging from 0.29 to 32 MgC.ha-1.year-1, were sequestered according to specific argroforestry systems. Yet, allometric equations for many species are lacking as carbon stock in several soil types needs to be estimated. Indeed, further studies need to be undertaken therein.
    [Show full text]
  • The Coastwatcher
    13 JUN-CTWG Op Eval TRANEX TBA-JUL CTWG Encampment 21-23 AUG-CTWG/USAF Evaluation Missions for 15-23 AUG-NER Glider Academy@KSVF America 26-29 AUG-CAP National Conference Semper vigilans! 12 SEP-Cadet Ball-USCGA Semper volans! CADET MEETING REPORT The Coastwatcher 24 February, 2015 Publication of the Thames River Composite Squadron Connecticut Wing Maj Roy Bourque outlined the Squadron Civil Air Patrol Rocketry Program and set deadlines for Cadet submission of plans. 300 Tower Rd., Groton, CT http://ct075.org . The danger of carbon monoxide poisoning was the subject of the safety meeting. C/2dLt Jessica LtCol Stephen Rocketto, Editor Carter discussed the prevention and detection of [email protected] this hazardous gas and opened up the forum to comments and questions from the Cadets. C/CMSgt Virginia Poe, Scribe C/SMSgt Michael Hollingsworth, Printer's Devil C/CMSgt Virginia Poe delivered her Armstrong Lt David Meers & Maj Roy Bourque, Papparazis Lecture on the “The Daily Benefits of the Hap Rocketto, Governor-ASOQB, Feature Editor Aerospace Program.” Vol. IX 9.08 25 February, 2015 Maj Brendan Schultz delivered his Eaker Lecture explaining the value of leadership skills learned in SCHEDULE OF COMING EVENT the Cadet Program and encouraged Cadets to apply their learning to the world outside of CAP. 03 MAR-TRCS Staff Meeting 10 MAR-TRCS Meeting C/SrA Thomas Turner outlined the history of 17 MAR-TRCS Meeting rocket propulsion from Hero's Aeopile to the 21 MAR-CTWG WWII Gold Medal Ceremony landing on the moon. He then explained each of 24 MAR-TRCS Meeting Newton's Three Laws of Dynamics and showed 31 MAR-TRCS Meeting their applications to rocketry.
    [Show full text]
  • Chapter 1 IPCC SRCCL
    Second Order Draft Chapter 1 IPCC SRCCL 1 Chapter 1: Framing and Context 2 3 Coordinating Lead Authors: Almut Arneth (Germany) and Fatima Denton (Gambia) 4 Lead Authors: Fahmuddin Agus (Indonesia), Aziz Elbehri (Morocco), Karheinz Erb (Italy), Balgis Osman 5 Elasha (Cote d’Ivoire), Mohammad Rahimi (Iran), Mark Rounsevell (United Kingdom), Adrian Spence 6 (Jamaica) and Riccardo Valentini (Italy) 7 Contributing Authors: Peter Alexander (United Kingdom), Yuping Bai (China), Ana Bastos (Portugal), 8 Niels Debonne (The Netherlands), Thomas Hertel (United States of America), Rafaela Hillerbrand 9 (Germany), Baldur Janz (Germany), Ilva Longva (United Kingdom), Patrick Meyfroidt (Belgium), Michael 10 O'Sullivan (United Kingdom) 11 Review Editors: Edvin Aldrian (Indonesia), Bruce McCarl (United States of America), Maria Jose Sanz 12 Sanchez (Spain) 13 Chapter Scientist: Yuping Bai (China), Baldur Janz (Germany) 14 Date of Draft: 16/11/2018 15 Do Not Cite, Quote or Distribute 1-1 Total pages: 87 Second Order Draft Chapter 1 IPCC SRCCL 1 Table of Contents 2 3 Chapter 1: Framing and Context .......................................................................................................... 1-1 4 Executive summary .................................................................................................................... 1-3 5 Introduction and scope of the report .......................................................................................... 1-5 6 Objectives and scope of the assessment ............................................................................
    [Show full text]
  • Allometric Equations for Four Valuable Tropical Tree Species Thomas G
    Forest Ecology and Management 229 (2006) 351–360 www.elsevier.com/locate/foreco Allometric equations for four valuable tropical tree species Thomas G. Cole, John J. Ewel * USDA Forest Service, Pacific Southwest Research Station, Institute of Pacific Islands Forestry, 60 Nowelo Street, P.O. Box 4370, Hilo, HI 96720, USA Received 22 March 2005; received in revised form 7 April 2006; accepted 8 April 2006 Abstract Four tree species were harvested periodically over a 13-year period from plantations in the humid lowlands of Costa Rica: Cedrela odorata, Cordia alliodora, Hyeronima alchorneoides, and Euterpe oleracea. The soil was a well-drained, volcanic alluvium, and high fertility coupled with 4 m of annual rainfall and high temperatures led to rapid growth rates; at age 13 many individual were >30 cm dbh and >30 m tall. Harvested trees were dissected into their component parts: leaves, rachises (for Cedrela and Euterpe), branches, boles, and coarse roots (i.e., >0.5 cm diameter). Roots of small trees were excavated in their entirety; those of large trees were harvested from a cylinder 1.0 m in diameter, immediately beneath the trunk. Large numbers of trees were sampled: 258–379 per species. Size classes sampled ranged from seedlings too small to have a dbh to trees of 30 cm dbh. Two separate allometric equations (one for trees having only a basal diameter and another for trees having a dbh), with diameter- squared times height as the metrics, were developed for each component of each species. Based on breaks in linear trends of ln–ln plots and deviations of predicted from actual values, we developed separate allometric equations, by component, for trees of different sizes.
    [Show full text]
  • The Effect of Tree Crown Allometry on Community Dynamics in Mixed
    Article The Effect of Tree Crown Allometry on Community Dynamics in Mixed-Species Stands versus Monocultures. A Review and Perspectives for Modeling and Silvicultural Regulation Hans Pretzsch Centre of Life and Food Sciences Weihenstephan, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; [email protected]; Tel.: +49-8161-71-4710 Received: 14 August 2019; Accepted: 11 September 2019; Published: 17 September 2019 Abstract: Many recent studies have shown that the structure, density, and productivity of mixed-species stands can differ from the weighted mean of monospecific stands of the respective species. The tree and stand properties emerging by inter-specific neighborhood should be considered in models for understanding and practical management. A promising approach for this is a more realistic representation of the individual tree allometry in models and management concepts, as tree allometry determines many structural and functional aspects at the tree and stand level. Therefore, this paper is focused on the crown allometry in mixed and mono-specific stands. Firstly, we review species-specific differences in the crown allometry in monospecific stands. Secondly, we show how species-specific differences and complementarities in crown allometry can emerge in mixed-species stands. Thirdly, the consequences of allometric complementarity for the canopy packing density will be analyzed. Fourthly, we trace the crown allometry from the tree level to the stand density and show the relevance for the self-thinning in mixed versus monospecific stands. Fifth, the consequence of the findings for modeling and regulating tree and stand growth will be discussed. The review deals mainly with widespread even-aged, mono-layered stands, but the main results apply for more heterogeneous stands analogously.
    [Show full text]
  • ABOVE GROUND BIOMASS ESTIMATION in PALM TREES USING TERRESTRIAL Lidar and TREE MODELLING 14 March 2017
    Centre for Geo-Information Thesis Report GIRS-2017-05 ABOVE GROUND BIOMASS ESTIMATION IN PALM TREES USING TERRESTRIAL LiDAR AND TREE MODELLING Adriana Careli Caballero Rodríguez March 2017 th 14 I II Above ground biomass estimation in palm trees using Terrestrial LiDAR and tree modelling Adriana Careli Caballero Rodríguez Registration number 88 07 15 154 020 Supervisors: MSc. Alvaro Iván Lau Sarmiento Dr. Harm Bartholomeus A thesis submitted in partial fulfilment of the degree of Master of Science at Wageningen University and Research Centre, The Netherlands. 14th March 2017 Wageningen, the Netherlands Thesis code number: GRS-80436 Thesis Report: GIRS-2017-05 Wageningen University and Research Centre Laboratory of Geo-Information Science and Remote Sensing III IV Foreword The use of LiDAR point clouds in forest management has become more common due to its accuracy and repeatability of analysis. This remote sensing technique in combination with other methods has contributed to obtain different quantitative estimates of tropical forests characteristics such as tree volume, biomass, gap fraction, etc. Specially, tropical forests contain most of the world’s terrestrial biodiversity and are considered as carbon stores. However, forest deforestation and degradation have contributed to the increase of greenhouse gases emissions, and loss of forest extension and biodiversity. Thus, these quantitative estimates as part of forest management contributes to address forest deforestation and degradation. Therefore, I chose this topic to conduct my master thesis project, motivated by my interest and enjoy of LiDAR, and to propose a method to calculate above ground biomass of two palm species from the Peruvian amazon without having reference data.
    [Show full text]
  • Allometric Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Vietnam
    Article Allometric Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Vietnam Bao Huy 1,2, Krishna P. Poudel 2, Karin Kralicek 2, Nguyen Dinh Hung 3, Phung Van Khoa 4, Vu Tan Phương 5 and Hailemariam Temesgen 2,* 1 Department of Forest Resources and Environment Management, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, Dak Lak 630000, Vietnam; [email protected] 2 Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR 97333, USA; [email protected] (K.P.P.); [email protected] (K.K.) 3 Forest Inventory and Planning Institute, Vinh Quynh, Thanh Tri, Ha Noi 100000, Vietnam; [email protected] 4 Vietnam National University of Forestry, Xuan Mai, Chuong My, Ha Noi 100000, Vietnam; [email protected] 5 Vietnamese Academy of Forest Sciences, Ðuc Thang, Bac Tu Liem, Ha Noi 100000, Vietnam; [email protected] * Correspondence: [email protected]; Tel.: +1-541-7378549; Fax: +1-541-7379126 Academic Editors: Shibu Jose and Timothy A. Martin Received: 23 May 2016; Accepted: 16 August 2016; Published: 22 August 2016 Abstract: There are few allometric equations available for dipterocarp forests, despite the fact that this forest type covers extensive areas in tropical Southeast Asia. This study aims to develop a set of equations to estimate tree aboveground biomass (AGB) in dipterocarp forests in Vietnam and to validate and compare their predictive performance with allometric equations used for dipterocarps in Indonesia and pantropical areas. Diameter at breast height (DBH), total tree height (H), and wood density (WD) were used as input variables of the nonlinear weighted least square models.
    [Show full text]
  • Forest Inventory
    Forest Inventory Basic knowledge The Forest Inventory Module is intended for people involved in the collection of data on forest resources. It provides insights into the types and purposes of forest inventories and sets out the main steps in conducting them, from measurement methods to data collection. The module provides basic and more detailed information on forest inventory, as well as links to forest inventory tools and case studies of effective forest inventories. Forest inventory is the systematic collection of data on the forestry resources within a given area. It allows assessment of the current status and lays the ground for analysis and planning, constituting the basis for sustainable forest management. In general, all inventory operations should follow at least the following steps: Definition of the inventory objectives and information desired. Development of sampling design and methods. Data collection (field surveys, remote sensing data analysis and other sources). Data analysis and publication of the results. Due to cost and time constraints inventories are generally carried out using sampling techniques. The general principle of sampling is to select a subset from a population and draw inferences from the sample to the entire population. The selection of the most appropriate sampling design is subject to several considerations (more details can be found in the Tools section of this module). Two basic considerations involve whether the objective is to set up a monitoring system (repeated measurements over time) and whether auxiliary information (i.e. aerial or satellite imageries) is available or not. The main factors determining the overall methodology are the purpose and the scale of the inventory.
    [Show full text]
  • Tropical Tree Height and Crown Allometries for the Barro Colorado
    Biogeosciences, 16, 847–862, 2019 https://doi.org/10.5194/bg-16-847-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: a comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits Isabel Martínez Cano1, Helene C. Muller-Landau2, S. Joseph Wright2, Stephanie A. Bohlman2,3, and Stephen W. Pacala1 1Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA 2Smithsonian Tropical Research Institute, 0843-03092, Balboa, Ancón, Panama 3School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA Correspondence: Isabel Martínez Cano ([email protected]) Received: 30 June 2018 – Discussion started: 12 July 2018 Revised: 8 January 2019 – Accepted: 21 January 2019 – Published: 20 February 2019 Abstract. Tree allometric relationships are widely employed incorporation of functional traits in tree allometric models for estimating forest biomass and production and are basic is a promising approach for improving estimates of forest building blocks of dynamic vegetation models. In tropical biomass and productivity. Our results provide an improved forests, allometric relationships are often modeled by fitting basis for parameterizing tropical plant functional types in scale-invariant power functions to pooled data from multiple vegetation models. species, an approach that fails to capture changes in scaling during ontogeny and physical limits to maximum tree size and that ignores interspecific differences in allometry. Here, we analyzed allometric relationships of tree height (9884 in- 1 Introduction dividuals) and crown area (2425) with trunk diameter for 162 species from the Barro Colorado Nature Monument, Panama.
    [Show full text]
  • Maintenance Cost, Toppling Risk and Size of Trees in a Self-Thinning Stand
    ARTICLE IN PRESS Journal of Theoretical Biology 265 (2010) 63–67 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/yjtbi Maintenance cost, toppling risk and size of trees in a self-thinning stand Markku Larjavaara a,b,Ã a CTFS Global Forest Carbon Research Initiative, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama´, Panama b Department of Forest Sciences, University of Helsinki, Finland article info abstract Article history: Wind routinely topples trees during storms, and the likelihood that a tree is toppled depends critically Received 13 October 2009 on its allometry. Yet none of the existing theories to explain tree allometry consider wind drag on tree Received in revised form canopies. Since leaf area index in crowded, self-thinning stands is independent of stand density, the 30 March 2010 drag force per unit land can also be assumed to be independent of stand density, with only canopy Accepted 20 April 2010 height influencing the total toppling moment. Tree stem dimensions and the self-thinning biomass can Available online 24 April 2010 then be computed by further assuming that the risk of toppling over and stem maintenance per unit Keywords: land area are independent of stand density, and that stem maintenance cost is a linear function of stem Allometric surface area and sapwood volume. These assumptions provide a novel way to understand tree Allometry allometry and lead to a self-thinning line relating tree biomass and stand density with a power between Biomass À3/2 and À2/3 depending on the ratio of maintenance of sapwood and stem surface.
    [Show full text]
  • Third North American Ornithological Conference a Joint Meeting Incorporating The
    Program for the Third North American Ornithological Conference a joint meeting incorporating the One Hundred and Twentieth Stated Meeting of the American Ornithologists' Union 72nd Annual Meeting of the Cooper Ornithological Society The 2002 Annual Meeting of the Raptor Research Foundation The 2002 Symposium of the Sección Mexicana del Consejo Internacional para la Preservación de las Aves (CIPAMEX) 21st Annual Meeting of the Society of Canadian Ornithologists/ Société des Ornithologistes du Canada The 2002 Workshop of the Society for the Conservation and Study of Caribbean Birds 24 - 28 September 2002 in New Orleans, Louisiana Local Host Institutions Tulane University The Audubon Nature Institute - 1 - Committee on Local Arrangements Tom Sherry and Kimberly Smith, Co-Chairs Art Exhibitions: John O’Neill and Douglas Pratt (Co-chairs), Josie Babin, Anne Bradburn, J. Randal Slocum Audio-Visual: Jim Ingold (Chair), Josie Babin, Cindy Gulledge, Bryan Sigel, Phil Stouffer, Carlos Valderrama Consultants: Hank Bart, Bonnie Bowen, Bob Cashner, Kai Fujita, Bette Loiselle, Anne Jakob and her staff of UNO Conference Services, Bob Thomas Field Trips: Jennifer Coulson (Chair), David Muth, Dan Purrington, Amy Smith-Kyle, Peter Yaukey Fund-Raising: Jim Ingold (Chair), Tom Sherry Graduate Student Coordination: Donata Roome (Chair) Listserve Manager: Van Remsen Logo Design: Michael Wilcox Publicity: Jennifer Coulson (Chair), Tom Sherry Resolutions: Ellen Paul Scientific Program: Phil Stouffer (Chair), Rebecca Holberton, Jim Ingold, Brian Millsap, Frank
    [Show full text]
  • The Spirit of Adventure (Version 0.4)
    The Spirit of Adventure (version 0.4) by Michael McCafferty The true story of the summer-long experience of a lifetime: flying a beautiful open-cockpit biplane, with wings of cloth and wood, touring Europe with the freedom of an eagle. © Copyright 2010, all rights reserved Michael McCafferty PO Box 2270 Del Mar, California USA email: [email protected] website: MichaelMcCafferty.com 2 Table of Contents Preface 8 The Fantasies 9 Waiting for the Slow Boat to Paris 12 Day 1: Silent fears 15 Day 2: A Day of Challenges 16 Day 3: A Lesson in French Hospitality 19 Day 4: An Excursion into the Streets of Paris 22 Day 5: The Calm Before The Storm 26 Day 6: Let There Be Wings! 28 Day 7: Taxi Ride from Hell, Haircut in Heaven 30 Day 8: A Very Short Story 33 Day 9: Only Pilots Know Why Birds Sing 34 Day 10: Friday the Thirteenth 37 Day 11: Who Is This Guy? What Makes Him Tick? 40 Day 12: The Paris Air Show 47 Day 13: The Air and Space Museum 51 Day 14: Another Rainy Day in Paris 54 Day 15: An Old Irish Prescription 57 Day 16: Observations From A Sidewalk Café 60 Day 17: The Loose End of a Long Red Tape 65 3 Day 18: Meditations at the Babylon Café 69 Day 19: A Street Party of Epic Proportions 71 Day 20: Anticipation 74 Day 21: Another Day On, and Under, the Ground 77 Day 22: To Fly Is To Be 80 Day 23: Of Corsica! 86 Day 24: More Than Just A Pretty Face 88 Day 25: Mono-kinis 91 Day 26: The Global Perspective 94 Day 27: Please Stand By.
    [Show full text]