Research Article 1531 Neuregulin-1 potentiates agrin-induced acetylcholine receptor clustering through muscle-specific kinase phosphorylation Shyuan T. Ngo1, Rebecca N. Cole3, Nana Sunn2, William D. Phillips3,* and Peter G. Noakes1,2,*,` 1School of Biomedical Sciences, University of Queensland, St. Lucia, 4072, Queensland, Australia 2Queensland Brain Institute, University of Queensland, St. Lucia, 4072, Queensland, Australia 3Physiology and Bosch Institute, The University of Sydney, New South Wales, 2006, Australia *These authors contributed equally to this work `Author for correspondence (
[email protected]) Accepted 14 November 2011 Journal of Cell Science 125, 1531–1543 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.095109 Summary At neuromuscular synapses, neural agrin (n-agrin) stabilizes embryonic postsynaptic acetylcholine receptor (AChR) clusters by signalling through the muscle-specific kinase (MuSK) complex. Live imaging of cultured myotubes showed that the formation and disassembly of primitive AChR clusters is a dynamic and reversible process favoured by n-agrin, and possibly other synaptic signals. Neuregulin-1 is a growth factor that can act through muscle ErbB receptor kinases to enhance synaptic gene transcription. Recent studies suggest that neuregulin-1–ErbB signalling can modulate n-agrin-induced AChR clustering independently of its effects on transcription. Here we report that neuregulin-1 increased the size of developing AChR clusters when injected into muscles of embryonic mice. We investigated this phenomenon using cultured myotubes, and found that in the ongoing presence of n-agrin, neuregulin-1 potentiates AChR clustering by increasing the tyrosine phosphorylation of MuSK. This potentiation could be blocked by inhibiting Shp2, a postsynaptic tyrosine phosphatase known to modulate the activity of MuSK.