"Boards & Solutions", 03/2007

Total Page:16

File Type:pdf, Size:1020Kb

EMBEDDED LINUX Native mainline Linux: fit for embedded and real-time systems By Carsten Emde, Open Source Automation Development Lab, and Thomas Gleixner, Linutronix When Linux was born on August 1, 1991, nobody expected that 15 years later the scale of supported hardware would range from tiny micro - controllers up to large multi - processor mainframes, or that Linux would become a real-time operating system. Figure 1. Linux Fedora 7 system running a total of seven virtual systems simultaneously I What is real-time and how is it measured? As start of the interrupt service routine is called tion by respondents planning to use Linux was generally agreed, it is not an average fast re - “interrupt latency”, and the interval between the the item “real-time limitations”. At this time, it sponse that makes a system real-time compliant input trigger and the execution of the user was a common understanding that a real-time but the reliability that a defined response in - space program is called “overall latency”, “pre- operating system must be conceived from the terval is not exceeded under whatever circum - emption latency”, or simply “latency” (figure 2). very beginning as such and that every single stances. A system, for example, that reliably Normally, a large number of single measure - component must be designed with all aspects of responds to external signals within 30 minutes ments is taken over several hours while gener - real-time execution in mind. Thus, retrofitting is a real-time system whereas another system, ating a realistic system load, and the longest real-time capabilities into the native mainline that relies on a timely response within 30 mi - measured overall latency is taken as the final re - Linux was deemed impossible. As a conse - croseconds but fails once in a year, is not. sult. This is then called “worst-case latency”. To quence, several Linux real-time projects were gain a better overview, the data points are best started that used the dual-kernel approach. This In order to determine the real-time capabilities displayed graphically in a latency histogram approach replaces the Linux kernel by a small of a system, an external signal is applied re - (figure 3). real-time kernel to which all interrupts are sent peatedly to a controller input such as a digital and which controls the entire system. One of its input line or a handshake line of a serial or par - Initially, the Linux operating system was adopt - tasks is a modified Linux kernel; this enables ex - allel communication controller. The analysis re - ed primarily as a server platform - probably due ecution of Linux user space programs and thus quires that a few lines of code are inserted into to its support of generally available and inex - provides binary Linux compatibility of the en - the beginning of the respective interrupt serv - pensive hardware in combination with its su - tire system (figure 4). ice routine and into the initial part of a user perior network capabilities and run-time space program waiting for this interrupt. These stability. At a later stage, support for architec - Examples of solutions using this approach are lines of codes are written in such a way that a tures other than x86 was added so the use of RTLinux, RTAI, and Xenomai; they have been pulse is generated at an output device. This Linux could have been extended immediately to used repeatedly and successfully in recent years pulse can then be measured along with the embedded systems. However, embedded sys - in a large number of industrial applications. input trigger using an oscilloscope. In addition, tems often require real-time capabilities which RTLinux, RTAI, and Xenomai offer, similarly to the respective interrupt line is also monitored. Linux as a server operating system was never in - the RT-Preempt patches, a POSIX compatible tended to provide. In fact, in a 2001 survey pub - API to access real-time related functionality. The interval between the input trigger and the lished in April 2002 as a Venture Development Xenomai, in addition, comes with a collection of corresponding level change of the interrupt line Corporation Whitepaper (http://linuxde - other APIs (called “skins”). They greatly facili - is called “gate latency” or “controller latency”. vices.com/articles/AT6328992055.html), the tate the migration from proprietary real-time The interval between the input trigger and the most important factor inhibiting Linux adop - operating systems. In the foreseeable future, it is June 2007 2 EMBEDDED LINUX The other features, such as PI mutexes, high-res - olution timers and interrupt threading, were only available when the kernel was patched with the “RT-Preempt” patch downloaded from Ingo Molnar's repository at RedHat http://people.red - hat.com/mingo/realtime-preempt/. The various elements of this patch described above were de - veloped over the last couple of years by Ingo Mol - nar and Thomas Gleixner with support from many kernel developers worldwide. There was al - ways hope that the RT-Preempt patch would be integrated into mainline Linux one day. But con - vincing Linus Torvalds that making Linux a real- time operating system would do no harm, but greatly enhance its usability, was not an easy task. Figure 2. The various elements of the overall or pre-emption latency Fortunately, there were an increasing number of arguments to make Linux real-time compliant - well conceivable that Xenomai will adopt the low-priority process executing a kernel function not only for industrial automation projects but also RT-Preempt approach explained below and under locking conditions may block a high-pri - for standard server and desktop Linux systems: provide additional functionality on top of the ority process that is about to execute the same Audio and video mixing and recording real-time capable mainline Linux kernel. In par - kernel function. This phenomenon is called pri - Reliable timestamps in financial and allel, the mainline Linux evolved as well. A first ority inversion, and one of the solutions is to commercial transactions important step was to replace the O(n) sched - bequeath the priority level to the mutex and let Voice over IP and streaming video services. uler by Ingo Molnar's O(1) scheduler. This new it execute under the same priority as the calling scheduler was already merged into the devel - process. This special mutex variant that is At the occasion of the Ottawa kernel summit in opment Linux 2.5 kernel tree in 2002 and be - called Priority Inheritance Mutex (abbreviated July 2006, Linus Torvalds finally accepted came the standard scheduler in Linux 2.6 PI Mutex) was implemented for use in the merging the first part of the RT-Preempt introduced in December 2003. It ensures that Linux kernel. patches and agreed to gradually enter the other the time needed to schedule is fixed and deter - components into mainline. As of kernel version ministic irrespective of the number of active In addition to kernel code, drivers and specif - 2.6.21, approximately 60% of the RT-Preempt tasks - an important prerequisite towards real- ically their interrupt service routine may also patches (complete kernel preemption, PI time performance. Another important step cause latencies. In consequence, to further re - mutexes and the high-resolution timers) are which was also added to the development ker - duce the overall latency, a mechanism must be already available in mainline Linux. It is ex - nel 2.5 and became readily available in 2.6 was found to enable scheduling during execution of pected that most of the rest will have followed to enable scheduling during execution of cer - the interrupt service routines. This may not be until the end of 2007. tain parts of the kernel. This feature is called meaningful during its initial part when hard - kernel pre-emption; it prevents a low-priority ware is accessed more frequently, e.g. to ac - process from blocking a high-priority process knowledge the interrupt and to read and write Linux goes Virtualisation while the former is executing a kernel call. Ini - the various data and status registers of a par - Virtualisation of an entire computer requires an tially, only small portions of the kernel code ticular controller. But it may be very effective additional level of privilege (the “hypervisor” were made interruptible but they have been during the remaining stages of the interrupt privilege) to ensure that the virtual machine extended continuously. service routine where hardware accesses occur monitor can control both the system and user less frequently. This feature is called interrupt level of a virtual machine and also that the vir - Due to the very nature of the kernel tasks, there threading. tual machine cannot interfere with the activities will always be a certain part of the kernel code of the host system or another virtual machine. that must be executed exclusively, and thus re - Precise timing in real-time systems requires Up to about one year ago, this additional priv - quires locking against other processes. Such timers with a resolution in the range of mi - ilege level was realised mainly in software such mut ual ex clusion is done using so-named mu - croseconds. The Linux system clock, however, as products provided by VMware Inc. (Palo texes; but a general problem is, again, that a could only be set to an interval of 1, 4 or 10 mil - Alto, USA). However, most of the newer x86 liseconds corresponding to 1000, 250 and 100 processors from Intel and AMD provide the re - Hz, respectively. Several coding attempts to in - quired hypervisor privilege level in hardware crease the system clock failed, since clock fre - which greatly simplifies the design of the virtual quencies above 1000 Hz did not scale.
Recommended publications
  • The Kernel Report
    The kernel report (ELC 2012 edition) Jonathan Corbet LWN.net [email protected] The Plan Look at a year's worth of kernel work ...with an eye toward the future Starting off 2011 2.6.37 released - January 4, 2011 11,446 changes, 1,276 developers VFS scalability work (inode_lock removal) Block I/O bandwidth controller PPTP support Basic pNFS support Wakeup sources What have we done since then? Since 2.6.37: Five kernel releases have been made 59,000 changes have been merged 3069 developers have contributed to the kernel 416 companies have supported kernel development February As you can see in these posts, Ralink is sending patches for the upstream rt2x00 driver for their new chipsets, and not just dumping a huge, stand-alone tarball driver on the community, as they have done in the past. This shows a huge willingness to learn how to deal with the kernel community, and they should be strongly encouraged and praised for this major change in attitude. – Greg Kroah-Hartman, February 9 Employer contributions 2.6.38-3.2 Volunteers 13.9% Wolfson Micro 1.7% Red Hat 10.9% Samsung 1.6% Intel 7.3% Google 1.6% unknown 6.9% Oracle 1.5% Novell 4.0% Microsoft 1.4% IBM 3.6% AMD 1.3% TI 3.4% Freescale 1.3% Broadcom 3.1% Fujitsu 1.1% consultants 2.2% Atheros 1.1% Nokia 1.8% Wind River 1.0% Also in February Red Hat stops releasing individual kernel patches March 2.6.38 released – March 14, 2011 (9,577 changes from 1198 developers) Per-session group scheduling dcache scalability patch set Transmit packet steering Transparent huge pages Hierarchical block I/O bandwidth controller Somebody needs to get a grip in the ARM community.
    [Show full text]
  • Studying the Real World Today's Topics
    Studying the real world Today's topics Free and open source software (FOSS) What is it, who uses it, history Making the most of other people's software Learning from, using, and contributing Learning about your own system Using tools to understand software without source Free and open source software Access to source code Free = freedom to use, modify, copy Some potential benefits Can build for different platforms and needs Development driven by community Different perspectives and ideas More people looking at the code for bugs/security issues Structure Volunteers, sponsored by companies Generally anyone can propose ideas and submit code Different structures in charge of what features/code gets in Free and open source software Tons of FOSS out there Nearly everything on myth Desktop applications (Firefox, Chromium, LibreOffice) Programming tools (compilers, libraries, IDEs) Servers (Apache web server, MySQL) Many companies contribute to FOSS Android core Apple Darwin Microsoft .NET A brief history of FOSS 1960s: Software distributed with hardware Source included, users could fix bugs 1970s: Start of software licensing 1974: Software is copyrightable 1975: First license for UNIX sold 1980s: Popularity of closed-source software Software valued independent of hardware Richard Stallman Started the free software movement (1983) The GNU project GNU = GNU's Not Unix An operating system with unix-like interface GNU General Public License Free software: users have access to source, can modify and redistribute Must share modifications under same
    [Show full text]
  • Version 7.8-Systemd
    Linux From Scratch Version 7.8-systemd Created by Gerard Beekmans Edited by Douglas R. Reno Linux From Scratch: Version 7.8-systemd by Created by Gerard Beekmans and Edited by Douglas R. Reno Copyright © 1999-2015 Gerard Beekmans Copyright © 1999-2015, Gerard Beekmans All rights reserved. This book is licensed under a Creative Commons License. Computer instructions may be extracted from the book under the MIT License. Linux® is a registered trademark of Linus Torvalds. Linux From Scratch - Version 7.8-systemd Table of Contents Preface .......................................................................................................................................................................... vii i. Foreword ............................................................................................................................................................. vii ii. Audience ............................................................................................................................................................ vii iii. LFS Target Architectures ................................................................................................................................ viii iv. LFS and Standards ............................................................................................................................................ ix v. Rationale for Packages in the Book .................................................................................................................... x vi. Prerequisites
    [Show full text]
  • The Linux Kernel Past, Present and Future - the Linux Way
    The Linux kernel Past, Present and Future - the Linux way Muli Ben-Yehuda [email protected] IBM Haifa Research Labs The Linux Kernel - HRL 2003 – p.1/21 The Linux Kernel linux is a free (speech and beer) UNIX like operating system, developed by thousands of volunteers around the world - including yours truly started as a hobby, grew and matured with the years countless man years went into it, some paid, some for fun one of the leading server operating systems today . and one of the leading embedded operating systems poised to take over the desktop? Hebrew support? The Linux Kernel - HRL 2003 – p.2/21 The beginning From: [email protected] (Linus Benedict Torvalds) Date: 25 Aug 91 20:57:08 GMT Hello everybody out there using minix - I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones. This has been brewing since april, and is starting to get ready. I'd like any feedback on things people like/dislike in minix, as my OS resembles it somewhat (same physical layout of the file-system (due to practical reasons) among other things). I've currently ported bash(1.08) and gcc(1.40), and things seem to work.This implies that I'll get something practical within a few months, andI'd like to know what features most people would want. Any suggestions are welcome, but I won't promise I'll implement them :-) Linus ([email protected]) PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
    [Show full text]
  • Linux Kernel 8.1 Introduction
    Page 1 of 6 Linux Kernel 8.1 Introduction: The Linux kernel is a Unix-like operating system kernel used by a variety of operating systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a prominent example of free and open source software. The Linux kernel is released under the GNU General Public License version 2 (GPLv2) (plus some firmware images with various non-free licenses), and is developed by contributors worldwide. Day-to-day development discussions take place on the Linux kernel mailing list. The Linux kernel was initially conceived and created in 1991 by Finnish computer science student Linus Torvalds. Linux rapidly accumulated developers and users who adapted code from other free software projects for use with the new operating system. The Linux kernel has received contributions from thousands of programmers. 8.2 History: History In April 1991, Linus Torvalds, a 21-year-old student at the University of Helsinki, Finland started working on some simple ideas for an operating system. He started with a task switcher in Intel 80386 assembly language and a terminal driver. On 25 August 1991, Torvalds posted the following to comp.os.minix, a newsgroup on Usenet: I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones. This has been brewing since April, and is starting to get ready. I'd like any feedback on things people like/dislike in minix, as my OS resembles it somewhat (same physical layout of the file-system (due to practical reasons) among other things).
    [Show full text]
  • Diversity Among Leading Linux Kernel Developers (2005-2020)
    A well of loneliness : diversity among leading Linux kernel developers (2005-2020) Camille Akmut February 5, 2020 abstract Fifteen years of Linux kernel development are reviewed from the point of view of gender diversity. Study based on total commits (as opposed to e.g. mailing list participation) : ≥ 1,400, corresponding to top 50 Linux kernel developers (including Linus Torvalds). 1 Table 1 { Diversity among Linux kernel developers (2005-2020) commits 1 tiwai 6,207 Takashi Iwai m 2 ickle 5,401 ? ? 3 arndb 4,633 Arnd Bergmann (?) m (?) 4 jmberg 4,435 Johannes Berg (?) m (?) 5 gregkh 4,344 Greg Kroah-Hartman m 6 bigguiness 4,196 H Hartley Sweeten m 7 htejun 4,132 Tejun Heo m 8 broonie 4,060 Mark Brown m 9 mchehab 3,988 Mauro Carvalho Chehab m 10 morimoto 3,387 Kuninori Morimoto m 11 davem330 3,217 David S. Miller m 12 danvet 3,187 Daniel Vetter m 13 JoePerches 3,131 Joe Perches (?) m (?) 14 skeggsb 3,115 Ben Skeggs (?) m (?) 15 vsyrjala 3,102 Ville Syrjala (?) m (?) 16 linusw 2,971 Linus Walleij m 17 AxelLin 2,929 Axel Lin m 18 ColinIanKing 2,676 Colin Ian King m 19 dhowells 2,452 David Howells (?) m (?) 20 bzolnier 2,424 Bartlomiej Zolnierkiewicz (?) m (?) 21 jwrdegoede 2,316 Hans de Goede m 22 larsclausen 2,302 Lars-Peter Clausen m 23 andy-shev 2,288 Andy Shevchenko m 24 jhovold 2,146 Johan Hovold m 25 ralfbaechle 2,123 Ralf Baechle m 26 masahir0y 2,060 Masahiro Yamada m 27 ebiederm 1,934 Eric Biederman (?) m (?) 28 AdrianBunk 1,914 Adrian Bunk m 29 paulmck 1,847 Paul E.
    [Show full text]
  • Linux Kernel Development
    Linux Kernel Development Third Edition Developer’s Library ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS Developer’s Library books are designed to provide practicing programmers with unique, high-quality references and tutorials on the programming languages and technologies they use in their daily work. All books in the Developer’s Library are written by expert technology practitioners who are especially skilled at organizing and presenting information in a way that’s useful for other programmers. Key titles include some of the best, most widely acclaimed books within their topic areas: PHP & MySQL Web Development Python Essential Reference Luke Welling & Laura Thomson David Beazley ISBN 978-0-672-32916-6 ISBN-13: 978-0-672-32978-6 MySQL Programming in Objective-C 2.0 Paul DuBois Stephen G. Kochan ISBN-13: 978-0-672-32938-8 ISBN-13: 978-0-321-56615-7 Linux Kernel Development PostgreSQL Robert Love Korry Douglas ISBN-13: 978-0-672-32946-3 ISBN-13: 978-0-672-33015-5 Developer’s Library books are available at most retail and online bookstores, as well as by subscription from Safari Books Online at safari.informit.com Developer’s Library informit.com/devlibrary Linux Kernel Development Third Edition Robert Love Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Cape Town • Sydney • Tokyo • Singapore • Mexico City Linux Kernel Development Acquisitions Editor Third Edition Mark Taber Development Copyright © 2010 Pearson Education, Inc. Editor All rights reserved. Printed in the United States of America. This publication is protected by Michael Thurston copyright, and permission must be obtained from the publisher prior to any prohibited repro- Technical Editor duction, storage in a retrieval system, or transmission in any form or by any means, elec- Robert P.
    [Show full text]
  • Systemd and Linux Watchdog
    systemd and Linux Watchdog Run a program at... login? = .profile file boot? = systemd What to do if software locks up? 21-4-11 CMPT 433 Slides #14 © Dr. B. Fraser 1 systemd ● systemd used by most Linux distros as first user- space application to be run by the kernel. – 'd' means daemon: ... – Use systemd to run programs at boot (and many other things). 21-4-11 2 Jack of All Trades 21-4-11 https://www.zdnet.com/article/linus-torvalds-and-others-on- linuxs-systemd/ 3 systemd ● Replaces old “init” system: – Manages dependencies and allows concurrency when starting up applications – Does many things: login, networking, mounting, etc ● Controversy – Violates usual *nix philosophy of do one thing well. http://www.zdnet.com/article/linus-torvalds-and-others-on-linuxs-systemd/ – Some lead developers are said to have a bad attitude towards fixing “their” bugs. ● It's installed on the Beaglebone, so we'll use it! – Copy your code to BBG's eMMC (vs run over NFS). 21-4-11 4 Create a systemd service Assume 11-HttpsProcTimer ● Setup .service file: example installed to /opt/ (bbg)$ cd /lib/systemd/system (bbg)$ sudo nano foo.service [Unit] Description=HTTPS server to view /proc on port 8042 Use [Service] absolute User=root paths WorkingDirectory=/opt/10-HttpsProcTimer-copy/ ExecStart=/usr/bin/node /opt/10-HttpsProcTimer-copy/server.js SyslogIdentifier=HttpsProcServer [Install] WantedBy=multi-user.target 21-4-11 5 Controlling a Service ● Configure to run at startup (bbg)$ systemctl enable foo.service ● Manually Starting/Stopping Demo: Browse to (bbg)$ systemctl start foo.service https://192.168.7.2:3042 after reboot – Can replace start with stop or restart ● Status (bbg)$ systemctl status foo.service (bbg)$ journalctl -u foo.service (bbg)$ systemctl | grep HTTPS 21-4-11 6 Startup Script Suggestions ● If your app needs some startup steps, try a script: – copy app to file system (not running via NFS) – add 10s delay at startup ● I have found that some hardware configuration commands can fail if done too soon.
    [Show full text]
  • GNU/Linux for Beginners
    What is Linux? Awesome Applications Linux Manuals: Linux is an independent Unix-like operating system Debian Handbook that can be freely modified and redistributed. It works Debian Users' Manuals on all major 32-bit and 64-bit computer hardware Arch Linux platforms and is an implementation of the POSIX Linux Handbook specification with which all true versions of Unix UbuntuHandbook comply. Linux uses no code from proprietary Unix Making Installation Media: sources, and much of the software available for Linux After downloading the .img or .iso file, install to and is developed by the Free Software Foundation's GNU then boot from USB flash drive . Or b urn the .img project. The result of efforts by thousands of or .iso file to disc. Burning is NOT just copying. programmers coordinating via the Internet, Linux is Linux applications (apps) focus on doing one job well MS Windows® installation tools: now recognized as one of the most stable and flexible RaWrite operating systems available at any price. with communications between applications implemented using well-defined public protocols and balenaEtcher file formats. This modular design has a number of Rufus What Systems Run Linux? advantages, including flexibility, simplicity, and U niversal USB Installer Desktops and Laptops stability. A particular application can be replaced by U N etbootin Linux graphical interfaces such as GNOME or KDE any equivalent which follows the same rules. can replace Mac OS and Windows on the workstation Linux/Unix or Similar installation tools: for most users' needs. Runs on all major PC hardware The resulting freedom of choice leads to friendly The dd command line program.
    [Show full text]
  • Limiting Ptrace on Production Linux Systems
    1 LIMITING PTRACE ON PRODUCTION LINUX SYSTEMS INTRODUCTION The Linux®2 kernel is the core component of a family of operating systems that underpin a large portion of government and commercial servers and infrastructure devices. Due to the prevalence of Linux systems in public and private infrastructure, ensuring system security by following community best practices to address current threats and risks is critical. In Linux, ptrace is a mechanism that allows one process to “trace” the execution of another process. The tracer is able to pause execution, and inspect and modify memory and registers in the tracee process: in short, the tracer maintains total control over the tracee. The legitimate use case for this functionality is debugging and troubleshooting. Utilities like strace and gdb use ptrace to perform their introspection duties. Not surprisingly, malicious implants sometimes use this functionality to steal secrets from another process or to force them into serving as proxies for anomalous behavior. PROPOSAL Production systems rarely need to use debugging utilities. For this reason, it is often safe to remove the ability to perform ptrace-related functions, at least in normal operational mode. The YAMA Linux Security Module, included in most Linux distributions, can be used to remove the ability for any process to ptrace another. To configure systems to automatically do this on boot, create a service file in /etc/systemd/system with the following contents: [Unit] Description=Removes, system-wide, the ability to ptrace ConditionKernelCommandLine=!maintenance [Service] Type=forking Execstart=/bin/bash –c “sysctl -w kernel.yama.ptrace_scope=3” Execstop= [Install] WantedBy=default.target Ensure that the service file created has read and execute permissions for the owner and group.
    [Show full text]
  • An Interview with Linus Torvalds
    An Interview with Linus Torvalds Mike Linksvayer placed this interview in the public domain. Linus Torvalds, a computer science student at the University of Helsinki in his early twenties, took his first course on Unix and C in the fall of 1990. In the Spring of 1991 Linus was running Minix (a small Unix-like operating system designed for teaching) at home on his new 386. What was to become Linux started in the Summer of 1991 as a basic protected mode system that evolved from a Hello World program into a terminal program. By October 1991 Linux 0.02 was announced to the world. In two years, through the hard work of Linus and many other people, Linux, currently at version 0.99, has become an extremely useful and popular operating system. The comp.os.linux.* hierarchy is among USENETs’ busiest and there are several companies selling Linux and providing professional support. All this in such a short time, yet Linux is available for free, and volunteers have almost entirely done development. Meta interviewed Linus via E-mail to probe his mind about Linuxs future and the environment it is developed in. The results follow... Meta Magazine (Mike Linksvayer): Do you agree that without the net to facilitate collaboration and a base of preexisting free software (e.g., the GNU tools), Linux would not be nearly as developed as it is? Linus Torvalds: No question about it. Without net access, the project would never have even gotten off the ground; having access to gcc and the other GNU tools was very important.
    [Show full text]
  • Embedded Operating Systems and Linux
    Embedded Operating Systems and Linux Amir Hossein Payberah [email protected] 1 Agenda ➲ Embedded Systems ➲ Real Time Systems ➲ Who Are The Players? ➲ Linux As An Embedded OS ➲ Kernel 2.4 vs. 2.6 ➲ Applications And Products ➲ The Embedded OS Market 2 Embedded Systems 3 What is an Embedded OS? ➲ An "embedded system" is any computer sys- tem or computing device that performs a ded- icated function or is designed for use with a specific embedded software application. ➲ Embedded systems may use a ROM-based op- erating system or they may use a disk-based system, like a PC. But an embedded system is not usable as a general purpose computers or devices. 4 What makes a good Embedded OS? ➲ Modular ➲ Scalable ➲ Configurable ➲ Small footprint ➲ Device drivers ➲ etc, etc, etc... 5 Real Time Systems 6 What is Real Time? “A real time system is one in which the correct- ness of the computations not only depends upon the logical correctness of the computation but also upon the time at which the result is produced. If the timing constraints of the sys- tem are not met, system failure is said to have occurred.” Donald Gillies 7 What is Real Time? “Real time in operating systems: The ability of the operating system to provide a required level of service in a bounded re- sponse time.” POSIX Standard 1003.1 8 Hard vs. Soft Real Time ➲ Hard ● Absolute deadlines that must be met ● Example: Braking system controller ➲ Soft ● Time tolerance within which an event can occur ● Example: Multimedia streaming 9 What makes a good Real Time OS? ➲ Multi-threaded and pre-emptible
    [Show full text]