Clusters of Primordial Black Holes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Searching for Evaporating Primordial Black Holes Using Fermi Gamma Ray Telescope Data
Searching for Evaporating Primordial Black Holes using Fermi Gamma Ray Telescope Data Jagdev Bains CID 00552650 Horns Group, DESY A thesis submitted for the degree of MSci May 2011 Abstract All confirmed photon event data (≥ 100MeV) recorded by the Fermi Gamma Ray Telescope's (FGRT's) Large Area Telescope (LAT) was used to attempt to locate photons emitted by evaporating primordial black holes (PBHs) via Hawking radiation. An 'event' is a single photon recorded by the LAT. HEALPix was used to group photons spatially into pixels with unique iden- tification numbers, and all events within these pixels were sorted in time. The time interval between subsequent photons in each pixel was calculated and a histogram made for each pixel. The expected time distribution of events was compared with the measured for each pixel to identify any can- didates for further analysis; if the expected varied significantly with the measured at the smallest time intervals (26µs − 10s). Several pixels were found that met the criteria for further analysis, however they were all found to include known high energy photon sources. No pixels were found with extra photons at short time intervals that could not be attributed to gamma- ray bursts (GRBs) or known sources. A limit was calculated on the range at which the LAT could detect a PBH burst, between 16.69 and 289.16pc. Alle photonischen (≥ 100MeV) und vom Large Area Telescope (LAT) des Fermi Gamma Ray Telescope's (FGRT's) dokumentierten, bestaetigten Ereignisse wurden benutzt, um Photonen zu lokalisieren, die durch sich verfluechti- gende primordiale schwarze Loecher (PBHs) mit Hilfe der Hawking Strahlung emittiert wurden. -
Axions and Other Similar Particles
1 91. Axions and Other Similar Particles 91. Axions and Other Similar Particles Revised October 2019 by A. Ringwald (DESY, Hamburg), L.J. Rosenberg (U. Washington) and G. Rybka (U. Washington). 91.1 Introduction In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spon- taneous breaking of a global U(1) symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions (A0)[1–4] and majorons [5], associated, respectively, with a spontaneously broken Peccei-Quinn and lepton-number symmetry. A common feature of these light bosons φ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. The interaction Lagrangian is −1 µ L = f J ∂µ φ , (91.1) where J µ is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators. Axions are of particular interest because the Peccei-Quinn (PQ) mechanism remains perhaps the most credible scheme to preserve CP-symmetry in QCD. Moreover, the cold dark matter (CDM) of the universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery. -
Memoria De Publicaciones 2017 Facultad De Ciencias Uam Memoria De Publicaciones De La Facultad De Ciencias 2017
MEMORIA DE PUBLICACIONES 2017 FACULTAD DE CIENCIAS UAM MEMORIA DE PUBLICACIONES DE LA FACULTAD DE CIENCIAS 2017 La Memoria de Publicaciones de la Facultad de Ciencias, como parte de la Memoria de Investigación, aspira a dar cuenta de los resultados de la investigación realizada a lo largo de 2017 por los profesores e investigadores de la Facultad. Ha sido realizada por la Biblioteca de Ciencias contando con las aportaciones facilitadas por los Departamentos y por el Decanato de la Facultad, en la persona de la Vicedecana de Investigación, a quienes agradecemos enormemente su aportación. Publicaciones en La Facultad ha generado un volumen de producción científica 2017 de 1.267 publicaciones 1.104 En 2017 se han publicado un total de 1.104 trabajos citables Trabajos Citables (entre artículos y revisiones) de los que 1.056 tienen Factor de Impacto calculado (96%) 73% La Facultad de Ciencias tiene un total de 807 trabajos Trabajos indexados en Q1, que supone el 73,10% del total de los Primer Cuartil – Q1 trabajos publicados, prácticamente igual que el año anterior. Algunos departamentos superan este porcentaje situándose entre el 85% y 96% 1 La Facultad de Ciencias tiene al único investigador de la UAM Highly Cited considerado como investigador altamente citado para el año Researchers 2017 en el área de Física, según los listados de Clarivate Analytics, elaborados a partir de la Web of Science. https://clarivate.com/hcr/researchers-list/archived-lists/ : es el profesor Francisco José García Vidal, del Departamento de Física Teórica de la Materia Condensada. Memoria de Publicaciones de la Facultad de Ciencias 2017 Página 2 de 146 ÍNDICE . -
Eight New Milky Way Companions Discovered in FirstYear Dark Energy Survey Data
Eight new Milky Way companions discovered in first-year Dark Energy Survey Data Article (Published Version) Romer, Kathy and The DES Collaboration, et al (2015) Eight new Milky Way companions discovered in first-year Dark Energy Survey Data. Astrophysical Journal, 807 (1). ISSN 0004- 637X This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/61756/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk The Astrophysical Journal, 807:50 (16pp), 2015 July 1 doi:10.1088/0004-637X/807/1/50 © 2015. -
Astro-Ph.GA] 28 May 2015
SLAC-PUB-16746 Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data K. Bechtol1;y, A. Drlica-Wagner2;y, E. Balbinot3;4, A. Pieres5;4, J. D. Simon6, B. Yanny2, B. Santiago5;4, R. H. Wechsler7;8;11, J. Frieman2;1, A. R. Walker9, P. Williams1, E. Rozo10;11, E. S. Rykoff11, A. Queiroz5;4, E. Luque5;4, A. Benoit-L´evy12, D. Tucker2, I. Sevilla13;14, R. A. Gruendl15;13, L. N. da Costa16;4, A. Fausti Neto4, M. A. G. Maia4;16, T. Abbott9, S. Allam17;2, R. Armstrong18, A. H. Bauer19, G. M. Bernstein18, R. A. Bernstein6, E. Bertin20;21, D. Brooks12, E. Buckley-Geer2, D. L. Burke11, A. Carnero Rosell4;16, F. J. Castander19, R. Covarrubias15, C. B. D'Andrea22, D. L. DePoy23, S. Desai24;25, H. T. Diehl2, T. F. Eifler26;18, J. Estrada2, A. E. Evrard27, E. Fernandez28;39, D. A. Finley2, B. Flaugher2, E. Gaztanaga19, D. Gerdes27, L. Girardi16, M. Gladders29;1, D. Gruen30;31, G. Gutierrez2, J. Hao2, K. Honscheid32;33, B. Jain18, D. James9, S. Kent2, R. Kron1, K. Kuehn34;35, N. Kuropatkin2, O. Lahav12, T. S. Li23, H. Lin2, M. Makler36, M. March18, J. Marshall23, P. Martini33;37, K. W. Merritt2, C. Miller27;38, R. Miquel28;39, J. Mohr24, E. Neilsen2, R. Nichol22, B. Nord2, R. Ogando4;16, J. Peoples2, D. Petravick15, A. A. Plazas40;26, A. K. Romer41, A. Roodman7;11, M. Sako18, E. Sanchez14, V. Scarpine2, M. Schubnell27, R. C. Smith9, M. Soares-Santos2, F. Sobreira2;4, E. Suchyta32;33, M. E. C. Swanson15, G. -
Arxiv:2105.11481V1 [Astro-Ph.CO] 24 May 2021
Ultrahigh-energy Gamma Rays and Gravitational Waves from Primordial Exotic Stellar Bubbles Yi-Fu Cai,1, 2, 3, ∗ Chao Chen,1, 2, 3, y Qianhang Ding,4, 5, z and Yi Wang4, 5, x 1Department of Astronomy, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China 2School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China 3CAS Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026, China 4Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R.China 5Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R.China We put forward a novel class of exotic celestial objects that can be produced through phase transitions occurred in the primordial Universe. These objects appear as bubbles of stellar sizes and can be dominated by primordial black holes (PBHs). We report that, due to the processes of Hawking radiation and binary evolution of PBHs inside these stellar bubbles, both electromagnetic and gravitational radiations can be emitted that are featured on the gamma-ray spectra and stochastic gravitational waves (GWs). Our results reveal that, depending on the mass distribution, the exotic stellar bubbles consisting of PBHs provide not only a decent fit for the ultrahigh-energy gamma-ray spectrum reported by the recent LHAASO experiment, but also predict GW signals that are expected to be tested by the forthcoming GW surveys. -
Primordial Black Holes from Thermal Inflation
IMPERIAL/TP/2019/TM/01 KCL-PH-TH/2019-33 Primordial Black Holes from Thermal Inflation Konstantinos Dimopoulos,a Tommi Markkanen,b;c Antonio Racioppic and Ville Vaskonend aConsortium for Fundamental Physics, Physics Department, Lancaster University, Lancaster LA1 4YB, UK bDepartment of Physics, Imperial College London, Blackett Laboratory, London, SW7 2AZ, UK cNational Institute of Chemical Physics and Biophysics, R¨avala 10, 10143 Tallinn, Estonia dPhysics Department, King's College London, London WC2R 2LS, UK E-mail: [email protected], [email protected], tommi.markkanen@kbfi.ee, antonio.racioppi@kbfi.ee, [email protected] Abstract. We present a novel mechanism for the production of primordial black holes (PBHs). The mechanism is based on a period of thermal inflation followed by fast-roll inflation due to tachyonic mass of order the Hubble scale. Large perturbations are generated at the end of the thermal inflation as the thermal inflaton potential turns from convex to concave. These perturbations can lead to copious production of PBHs when the relevant scales re-enter horizon. We show that such PBHs can naturally account for the observed dark matter in the Universe when the mass of the thermal inflaton is about 106 GeV and its coupling to the thermal bath preexisting the late inflation is of order unity. We consider also the possibility of forming the seeds of the supermassive black holes. In this case we find that the mass of the thermal inflaton is about 1 GeV, but its couplings have to be very small, ∼ 10−7. Finally we study a concrete realisation of our mechanism through a running mass model. -
Primordial Black Holes As a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 Kev Γ-Ray Line
PHYSICAL REVIEW LETTERS 123, 251101 (2019) Primordial Black Holes as a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 keV γ-Ray Line Ranjan Laha * Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland (Received 25 June 2019; revised manuscript received 9 October 2019; published 16 December 2019) We derive the strongest constraint on the fraction of dark matter that can be composed of low mass primordial black holes by using the observation of the Galactic Center 511 keV γ-ray line. Primordial black holes of masses ≲1015 kg will evaporate to produce eÆ pairs. The positrons will lose energy in the Galactic Center, become nonrelativistic, then annihilate with the ambient electrons. We derive robust and conservative bounds by assuming that the rate of positron injection via primordial black hole evaporation is less than what is required to explain the SPI/INTEGRAL observation of the Galactic Center 511 keV γ-ray line. Depending on the primordial black hole mass function and other astrophysical uncertainties, these constraints are the most stringent in the literature and show that primordial black holes contribute to less than 1% of the dark matter density. Our technique also probes part of the mass range which was completely unconstrained by previous studies. DOI: 10.1103/PhysRevLett.123.251101 Introduction.—Is it possible to constrain the primordial a few hundred M⊙. PBHs are one of the oldest candidates black hole (PBH) density such that it cannot contribute to of dark matter, and their abundance has been studied in a the entire dark matter density over its viable mass range? Answering this question will have important implications 0 for the search of the identity of dark matter and inflationary 10 dynamics which can give rise to PBHs [1–6]. -
Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope
Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope LSST Dark Matter Group arXiv:1902.01055v1 [astro-ph.CO] 4 Feb 2019 i Executive Summary More than 85 years after its astrophysical discovery, the fundamental nature of dark matter remains one of the foremost open questions in physics. Over the last several decades, an extensive experimental program has sought to determine the cosmological origin, fundamental constituents, and interaction mechanisms of dark matter. While the existing experimental program has largely focused on weakly-interacting massive particles, there is strong theoretical motivation to explore a broader set of dark matter candidates. As the high-energy physics program expands to “search for dark matter along every feasible avenue” (Ritz et al., 2014), it is essential to keep in mind that the only direct, empirical measurements of dark matter properties to date come from astrophysical and cosmological observations. The Large Synoptic Survey Telescope (LSST), a major joint experimental effort between NSF and DOE, provides a unique and impressive platform to study dark sector physics. LSST was originally envisioned as the “Dark Matter Telescope” (Tyson et al., 2001), though in recent years, studies of fundamental physics with LSST have been more focused on dark energy. Dark matter is an essential component of the standard ΛCDM model, and a detailed understanding of dark energy cannot be achieved without a detailed understanding of dark matter. In the precision era of LSST, studies of dark matter and dark energy are extremely complementary from both a technical and scientific standpoint. In addition, cosmology has consistently shown that it is impossible to separate the macroscopic distribution of dark matter from the microscopic physics governing dark matter. -
Solving Puzzles of GW150914 by Primordial Black Holes
Prepared for submission to JCAP Solving puzzles of GW150914 by primordial black holes S. Blinnikov,a;b;c;d;1 A. Dolgov,b;a N.K. Poraykoe;a and K.Postnovc;a;f aITEP, Bol. Cheremushkinsaya ul., 25, 117218 Moscow, Russia bNovosibirsk State University, Novosibirsk, 630090, Russia cSternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr., 13, Moscow 119234, Russia dKavli IPMU (WPI), Tokyo University, Kashiwa, Chiba, Japan eMax-Planck-Institut f¨urRadioastronomie, Bonn, Germany f Faculty of Physics, Moscow M. V. Lomonosov State University, 119991 Moscow, Russia E-mail: [email protected], [email protected], [email protected], [email protected] Abstract. The black hole binary properties inferred from the LIGO gravitational wave signal GW150914 posed several serious problems. The high masses and low effective spin of black hole binary can be explained if they are primordial (PBH) rather than the products of the stellar binary evolution. Such PBH properties are postulated ad hoc but not derived from fundamental theory. We show that the necessary features of PBHs naturally follow from the slightly modified Affleck-Dine (AD) mechanism of baryogenesis. The log-normal distribution of PBHs, predicted within the AD paradigm, is adjusted to provide an abundant population of low-spin stellar mass black holes. The same distribution gives a sufficient number of quickly growing seeds of supermassive black holes observed at high redshifts and may comprise an appreciable fraction of Dark Matter which does not contradict any existing observational limits. Testable predictions of this scenario are discussed. arXiv:1611.00541v2 [astro-ph.HE] 29 Nov 2016 1Corresponding author. -
Table of Contents (Print)
PHYSICAL REVIEW D PERIODICALS For editorial and subscription correspondence, Postmaster send address changes to: please see inside front cover (ISSN: 1550-7998) APS Subscription Services P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 94, NUMBER 6 CONTENTS D15 SEPTEMBER 2016 The Table of Contents is a total listing of Parts A and B. Part A consists of articles 061501–064038, and Part B articles 064039–069903(E) PART A RAPID COMMUNICATIONS Spacetime foam induced collective bundling of intense fields (7 pages) ............................................................ 061501(R) Teodora Oniga and Charles H.-T. Wang New dynamical instability in asymptotically anti–de Sitter spacetime (6 pages) ................................................... 061901(R) Umut Gürsoy, Aron Jansen, and Wilke van der Schee Low energy signatures of nonlocal field theories (6 pages) ........................................................................... 061902(R) Alessio Belenchia, Dionigi M. T. Benincasa, Eduardo Martín-Martínez, and Mehdi Saravani ARTICLES Light dark matter scattering in outer neutron star crusts (7 pages) ................................................................... 063001 Marina Cermeño, M.Ángeles Pérez-García, and Joseph Silk Implications of gamma-ray observations on proton models of ultrahigh energy cosmic rays (10 pages) ...................... 063002 A. D. Supanitsky Analogue black holes in relativistic BECs: Mimicking Killing and universal horizons (14 pages) ............................. 063003 Bethan Cropp, Stefano -
Primordial Black Hole Dark Matter from Single Field Inflation
IFT-UAM/CSIC-17-084 Primordial black hole dark matter from single field inflation Guillermo Ballesteros a and Marco Taoso b a Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS b Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid, Spain. Abstract We propose a model of inflation capable of generating a population of light black holes (about 10−16 – 10−14 solar masses) that might account for a significant fraction of the dark matter in the Universe. The effective potential of the model features an approximate inflection point arising from two-loop order logarithmic corrections in well-motivated and perturbative particle physics examples. This feature decelerates the inflaton before the end of inflation, enhancing the primordial spectrum of scalar fluctuations and triggering efficient black hole production with a peaked mass distribution. At larger field values, inflation occurs thanks to a generic small coupling between the inflaton and the curvature of spacetime. We compute accurately the peak mass and abundance of the primordial black holes using the Press-Schechter and Mukhanov-Sasaki formalisms, showing that the slow-roll approximation fails to reproduce the correct results by orders of magnitude. We study as well a qualitatively similar implementation of the idea, where the approximate inflection point is due to competing terms in a generic polynomial potential. In both models, requiring a significant part of the dark matter abundance to be in the form of black holes implies a small blue scalar tilt with a sizable negative running and a tensor spectrum that may be detected by the next-generation probes of the cosmic microwave background.