Carbon Dots As New Generation Materials for Nanothermometer: Review Lazo Jazaa Mohammed and Khalid M

Total Page:16

File Type:pdf, Size:1020Kb

Carbon Dots As New Generation Materials for Nanothermometer: Review Lazo Jazaa Mohammed and Khalid M Mohammed and Omer Nanoscale Research Letters (2020) 15:182 https://doi.org/10.1186/s11671-020-03413-x NANO REVIEW Open Access Carbon Dots as New Generation Materials for Nanothermometer: Review Lazo Jazaa Mohammed and Khalid M. Omer* Abstract Highly sensitive non-contact mode temperature sensing is substantial for studying fundamental chemical reactions, biological processes, and applications in medical diagnostics. Nanoscale-based thermometers are guaranteeing non-invasive probes for sensitive and precise temperature sensing with subcellular resolution. Fluorescence-based temperature sensors have shown great capacity since they operate as “non-contact” mode and offer the dual functions of cellular imaging and sensing the temperature at the molecular level. Advancements in nanomaterials and nanotechnology have led to the development of novel sensors, such as nanothermometers (novel temperature-sensing materials with a high spatial resolution at the nanoscale). Such nanothermometers have been developed using different platforms such as fluorescent proteins, organic compounds, metal nanoparticles, rare- earth-doped nanoparticles, and semiconductor quantum dots. Carbon dots (CDs) have attracted interest in many research fields because of outstanding properties such as strong fluorescence, photobleaching resistance, chemical stability, low-cost precursors, low toxicity, and biocompatibility. Recent reports showed the thermal-sensing behavior of some CDs that make them an alternative to other nanomaterials-based thermometers. This kind of luminescent-based thermometer is promising for nanocavity temperature sensing and thermal mapping to grasp a better understanding of biological processes. With CDs still in its early stages as nanoscale-based material for thermal sensing, in this review, we provide a comprehensive understanding of this novel nanothermometer, methods of functionalization to enhance thermal sensitivity and resolution, and mechanism of the thermal sensing behavior. Keywords: Nanothermometer, Non-contact thermometer, Fluorescent thermometer, Carbon dots nanothermometer Introduction In history, the earliest estimation of temperature was Temperature is a fundamental thermodynamic variable feasibly built on sensation or observation. In ancient that has a remarkable influence on the biological and times, 200–10 BC, pneumatic experiments (air expansion chemical systems. On account of its wide range of by heat) assign as the oldest recognized references of ap- applications, almost in all fields of natural sciences, en- paratuses utilized for quantitative measurements of heat. gineering, agricultural, and medical sciences, precise Amid the most primitive writings related to heat ex- temperature determination is of great significance [1, 2]. panded air are credited to the works authored by Philo In medical applications, thermometry is used for early of Byzantium and Hero (or Heron) of Alexandria con- detection of various diseases, such as stroke, cancer, or cerning pneumatic experiments [3]. Later on, between inflammations, one of whose incipient symptoms is the the years 1592 to 1603, Galileo Galilei invented a ther- emergence of localized temperature peculiarities. moscope by setting experiments with the expansion of air by heat via the building of a simple apparatus using a tube encompassing air trapped above a column of water. * Correspondence: [email protected] Department of Chemistry, College of Science, University of Sulaimani, Qliasan Following Galileo, the Italian Santorio is accredited first Street, Sulaimani City, Kurdistan Region 46002,, Iraq for integrating this simple apparatus into medical © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Mohammed and Omer Nanoscale Research Letters (2020) 15:182 Page 2 of 21 examinations of fever. The first fully sealed liquid-in- for applications in which electromagnetic noise is strong, glass thermometer, alcohol-filled glass tube, was assem- sparks could be dangerous, the environment is destruc- bled by Ferdinand II in the year 1641. He was able to tive, or parts are promptly moving. Besides, traditional measure temperature unaided by barometric pressure, un- thermometers are not capable of measurements when like Galileo and Santorio’s open thermoscope. Fahrenheit’s spatial resolution lowers to the sub-micron scale, for in- practical work in thermometry emerged in 1706; he stance, in intracellular temperature variations and map- started with alcohol but subsequently became legendary ping the temperature of microcircuits and microfluidics for his mercury thermometers. Recognition for the centes- [9]. In the same way, engineering applications necessitate imal temperature scale has been provided to Anders Cel- advanced thermosensitive strategies for miniatured re- sius, who in 1742 projected a scale with zero at the gions and difficult environment [10]. Thus, for nano- temperature of water boiling and 100 at the temperature scale domains, one should think about other approaches of water freezing. Electronic experimentations performed and materials. in the nineteenth century when Thomas Johann Seebeck Novel non-contact thermometry can overcome the considered the concept of thermoelectricity. In a succes- aforementioned problems. For example, optical thermo- sion of experiments conducted between the years 1820 sensors (molecular thermometers) are a more recent and 1823, he verified the electrical potential in the generation of analytical tools that consists of molecular juncture-points of two different metals when there is a classes that use the measurement of emitted light to ex- heat difference between the joints. This was later known tract temperature [11, 12]. Fluorescent temperature- as the Seebeck Effect and it serves as the origin of the sensitive probes offer a promising area for thermometry thermocouple which is considered the most accurate in nano-system applications. The temperature informa- measurement of temperature [3–7]. The schematic time- tion can be extracted based on their fluorescence inten- line of the thermometer is shown in Fig. 1. sity, band shape, Stokes shift, or decay lifetime can relate Conventional thermometers can be categorized into: temperature if properly calibrated [13, 14]. Molecular thermometers have great potential in diag- 1. Liquid-filled glass thermometers based on the nosing diseased or carcinogenic cells, which have varying thermal expansion of materials physiological temperatures than ordinary cells. In the 2. Thermocouples based on the Seebeck effect medical applications, possibilities range from the 3. Optical sensors [8] temperature-induced control of gene expression [15] and cell metabolism [16] to the cell-selective penetration Furthermore, they can be classified as contact or non- and treatment of disease [17] and improving the heat contact thermometers. Contact mode, including classical dissipation from integrated heat sources [18]. Recently, liquid-filled glass, thermocouples, thermistors, and re- nanomaterials such as semiconductors [19], polymeric sistance temperature detectors (RTDs), all necessitate [10], and metallic nanoparticles [20] have been used as electrical cabling and a direct touch between the therm- thermal-sensor (nanothermometer) that showed sub- ometer and the substrate. This mode is not appropriate micron thermal resolution. Fig. 1 Timeline scheme for the evolution of thermometers Mohammed and Omer Nanoscale Research Letters (2020) 15:182 Page 3 of 21 Thermometers that can resolve sub-degree of acrylamide)) generally display poor photostability and pro- temperature over a wide array of temperatures that also nounced cross-sensitivity to oxygen, which is undesirable for can become integrated within living systems could offer live-cell work [8]. Additionally, there is a strong pH depend- an influential new tool in countless areas of biological, ence on the lifetime of the fluorophore, which makes it diffi- physical, and chemical research. Therefore, in this re- cult to use without the precise controlling of the pH of the view, we focus on a “new generation” or a “new class” of environment being surveyed [37]. nanothermometer that is based on carbon nanomaterials Another class of nanothermometers based on both pure (carbonaceous materials). To the best of our knowledge, and doped semiconductor nanocrystals has been reported, there is no reported review article on carbon dots as a with most prominent candidates such as CdSe, ZnS, InP, or nanothermometer. Recently, carbon dots (carbon PbSe [19, 38–40]. Semiconductor quantum dots (SQDs) are quantum dots, graphene quantum dots) along with their a candidate for nanoscale thermometers, considering they unique characteristics showed sensitive thermal
Recommended publications
  • Carbon Based Nanodots in Early Diagnosis of Cancer
    MINI REVIEW published: 24 May 2021 doi: 10.3389/fchem.2021.669169 Carbon Based Nanodots in Early Diagnosis of Cancer Gurpal Singh 1*, Harinder Kaur 1†, Akanksha Sharma 1,2†, Joga Singh 1, Hema Kumari Alajangi 2, Santosh Kumar 3, Neha Singla 2, Indu Pal Kaur 1 and Ravi Pratap Barnwal 2* 1University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India, 2Department of Biophysics, Panjab University, Chandigarh, India, 3Department of Biotechnology, Panjab University, Chandigarh, India Detection of cancer at an early stage is one of the principal factors associated with successful treatment outcome. However, current diagnostic methods are not capable of making sensitive and robust cancer diagnosis. Nanotechnology based products exhibit unique physical, optical and electrical properties that can be useful in diagnosis. These nanotech-enabled diagnostic representatives have proved to be generally more capable Edited by: and consistent; as they selectively accumulated in the tumor site due to their miniscule size. Sushant P. Sahu, This article rotates around the conventional imaging techniques, the use of carbon based University of Louisiana at Lafayette, nanodots viz Carbon Quantum Dots (CQDs), Graphene Quantum Dots (GQDs), United States Nanodiamonds, Fullerene, and Carbon Nanotubes that have been synthesized in Reviewed by: Santosh Kumar Misra, recent years, along with the discovery of a wide range of biomarkers to identify cancer Indian Institute of Technology Kanpur, at early stage. Early detection of cancer using nanoconstructs is anticipated to be a distinct India reality in the coming years. Gaurav Manik, Indian Institute of Technology Keywords: cancer, nanotechnology, cancer diagnosis, quantum dots, carbon nanodots, bioconjugation Roorkee, India *Correspondence: Gurpal Singh [email protected] INTRODUCTION Ravi Pratap Barnwal [email protected] Cancer remains among the world’s most devastating diseases with about 20 million cases and †These authors have contributed 10 million deaths reported as of 2020.
    [Show full text]
  • Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases
    nanomaterials Review Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases Manas R. Biswal 1,2,3,4,*,† and Sofia Bhatia 1,† 1 Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; [email protected] 2 Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA 3 Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA 4 Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA * Correspondence: [email protected]; Tel.: +1-813-974-8333 † These authors contributed equally to this work. Abstract: Ocular gene therapy offers significant potential for preventing retinal dystrophy in patients with inherited retinal dystrophies (IRD). Adeno-associated virus (AAV) based gene transfer is the most common and successful gene delivery approach to the eye. These days, many studies are using non-viral nanoparticles (NPs) as an alternative therapeutic option because of their unique properties and biocompatibility. Here, we discuss the potential of carbon dots (CDs), a new type of nanocarrier for gene delivery to the retinal cells. The unique physicochemical properties of CDs (such as optical, electronic, and catalytic) make them suitable for biosensing, imaging, drug, and gene delivery applications. Efficient gene delivery to the retinal cells using CDs depends on various factors, such as photoluminescence, quantum yield, biocompatibility, size, and shape. In this review, Citation: Biswal, M.R.; Bhatia, S. we focused on different approaches used to synthesize CDs, classify CDs, various pathways for Carbon Dot Nanoparticles: Exploring the intake of gene-loaded carbon nanoparticles inside the cell, and multiple studies that worked on the Potential Use for Gene Delivery in transferring nucleic acid in the eye using CDs.
    [Show full text]
  • Carbon Quantum Dots: Bridging the Gap Between Chemical Structure and Material Properties
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2018 CARBON QUANTUM DOTS: BRIDGING THE GAP BETWEEN CHEMICAL STRUCTURE AND MATERIAL PROPERTIES Timothy J. Pillar-Little Jr. University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-6365-9417 Digital Object Identifier: https://doi.org/10.13023/ETD.2018.108 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Pillar-Little, Timothy J. Jr., "CARBON QUANTUM DOTS: BRIDGING THE GAP BETWEEN CHEMICAL STRUCTURE AND MATERIAL PROPERTIES" (2018). Theses and Dissertations--Chemistry. 94. https://uknowledge.uky.edu/chemistry_etds/94 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Carbon-Based Quantum Particles
    Carbon-based quantum particles: an electroanalytical and biomedical perspective Khadijeh Nekoueian, Mandana Amiri, Mika Sillanpää, Frank Marken, Rabah Boukherroub, Sabine Szunerits To cite this version: Khadijeh Nekoueian, Mandana Amiri, Mika Sillanpää, Frank Marken, Rabah Boukherroub, et al.. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chemical Society Reviews, Royal Society of Chemistry, 2019, 48 (15), pp.4281-4316. 10.1039/C8CS00445E. hal- 02390129 HAL Id: hal-02390129 https://hal.archives-ouvertes.fr/hal-02390129 Submitted on 2 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Carbon-Based Quantum Particles: An Electroanalytical and Biomedical Perspective Khadijeh Nekoueian,1,2 Mandana Amiri,1* Mika Sillanpää,2 Frank Marken,3 Rabah Boukherroub,4 Sabine Szunerits4* 1 Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran 2 Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland 3 Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom 4 Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France To be submitted to Chemical Society Reviews Abstract Carbon-based quantum particles, especially spherical carbon quantum dots (CQDs) and nanosheets like graphene quantum dots (GQDs), are an emerging class of quantum dots with unique properties owing to their quantum confinement effect.
    [Show full text]
  • Production of Yellow-Emitting Carbon Quantum Dots from Fullerene Carbon Soot
    SCIENCE CHINA Materials ARTICLES mater.scichina.com link.springer.com Published online 16 January 2017 | doi: 10.1007/s40843-016-5160-9 Sci China Mater 2017, 60(2): 141–150 Production of yellow-emitting carbon quantum dots from fullerene carbon soot Qinghong Zhang1,2, Xiaofeng Sun1,3, Hong Ruan1, Keyang Yin1 and Hongguang Li1* ABSTRACT Carbon quantum dots (CQDs) have emerged as because of their potential toxicity [4–6]. In 2004, carbon a new generation of photoluminescent nanomaterials with quantum dots (CQDs) were accidentally discovered by wide applications. Among the various synthetic routes for Xu et al. [7] during the purification of single-walled car- CQDs, the acid-refluxing method, which belongs to the group bon nanotubes (SWNTs), which quickly gained immense of “top-down” methods, offers the advantage of large-scale attention during the following years owing to their good production of CQDs and uses cheap and abundantly available starting materials. In this study, we evaluated the potential biocompatibility, high photostability, and tunable photolu- of fullerene carbon soot (FCS), a by-product obtained during minescent properties [8–11]. the synthesis of fullerene, as the starting material for CQD To fully realize the promising applications of CQDs, production. It was found that FCS can be successfully con- their large-scale and low-cost production is necessary. verted to CQDs in high production yield in mixed acids, i.e., Thus far, various methodologies have been reported for the concentrated HNO3 and H2SO4, under mild conditions. The synthesis of CQDs. These methodologies can be mainly fluorescence quantum yield (Φ) of the as-produced CQDs is classified into two categories, namely, the “top-down” and in the range of 3%–5%, which is the highest value for CQDs “bottom-up” methods.
    [Show full text]
  • Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis
    nanomaterials Review Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis Mingfei Pan 1,2, Xiaoqian Xie 1,2, Kaixin Liu 1,2, Jingying Yang 1,2, Liping Hong 1,2 and Shuo Wang 1,2,* 1 State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; [email protected] (M.P.); [email protected] (X.X.); [email protected] (K.L.); [email protected] (J.Y.); [email protected] (L.H.) 2 Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China * Correspondence: [email protected]; Tel.: +86-022-6091-2493 Received: 16 April 2020; Accepted: 5 May 2020; Published: 11 May 2020 Abstract: Carbon quantum dots (CQDs) with stable physicochemical properties are one of the emerging carbon nanomaterials that have been studied in recent years. In addition to the excellent optical properties such as photoluminescence, photobleaching resistance and light stability, this material also has favorable advantages of good biocompatibility and easy functionalization, which make it an ideal raw material for constructing sensing equipment. In addition, CQDs can combined with other kinds of materials to form the nanostructured composites with unique properties, which provides new insights and ideas for the research of many fields. In the field of food analysis, emerging CQDs have been deeply studied in food composition analysis, detection and monitoring trace harmful substances and made remarkable research progress. This article introduces and compares the various methods for CQDs preparation and reviews its related sensing applications as a new material in food components analysis and food safety inspection in recent years.
    [Show full text]
  • Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges
    nanomaterials Review Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges Fitri Aulia Permatasari 1 , Muhammad Alief Irham 1,2 , Satria Zulkarnaen Bisri 2,* and Ferry Iskandar 1,3,* 1 Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; [email protected] (F.A.P.); aliefi[email protected] (M.A.I.) 2 RIKEN Center of Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 3 Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia * Correspondence: [email protected] (S.Z.B.); ferry@fi.itb.ac.id (F.I.); Tel.: +81-48-462-1111 (S.Z.B.); +62-22-251-5032 (F.I.) Abstract: Carbon-based Quantum dots (C-QDs) are carbon-based materials that experience the quantum confinement effect, which results in superior optoelectronic properties. In recent years, C-QDs have attracted attention significantly and have shown great application potential as a high- performance supercapacitor device. C-QDs (either as a bare electrode or composite) give a new way to boost supercapacitor performances in higher specific capacitance, high energy density, and good durability. This review comprehensively summarizes the up-to-date progress in C-QD applications either in a bare condition or as a composite with other materials for supercapacitors. The current state of the three distinct C-QD families used for supercapacitors including carbon quantum dots, carbon dots, and graphene quantum dots is highlighted. Two main properties of C-QDs (structural and electrical properties) are presented and analyzed, with a focus on the contribution to supercapacitor performances.
    [Show full text]
  • Carbon Dots: an Emerging Smart Material for Analytical Applications
    micromachines Review Carbon Dots: An Emerging Smart Material for Analytical Applications Smita Das †, Lightson Ngashangva † and Pranab Goswami * Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; [email protected] (S.D.); [email protected] (L.N.) * Correspondence: [email protected]; Tel.: +91-361-258-2202; Fax: +91-361-258-2249 † These authors contribute equally to this manuscript. Abstract: Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD’s remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. Herein, an effort has been made to review the major advances made on CDs, focusing mainly on its smart material attributes and linked applications. Since the CD’s material properties are largely linked to their synthesis approaches, various synthesis methods, including surface passivation and functionalization of CDs and the mechanisms reported so far in their photophysical properties, are also delineated in this review. Finally, the challenges of using CDs and the scope for their further improvement as an optical signal transducer to expand their application horizon for developing analytical platforms have been discussed. Keywords: carbon dots; smart materials; photoluminescence; chemiluminescence; electrochemilumi- nescence; analytical; optical Citation: Das, S.; Ngashangva, L.; Goswami, P. Carbon Dots: An 1. Introduction Emerging Smart Material for Since the fortuitous discovery of carbon dots (CDs) in 2004, the interest in these Analytical Applications. luminescent nanomaterials has been increasing exponentially [1,2].
    [Show full text]
  • Biomass-Derived Nitrogen-Doped Carbon Quantum Dots
    Journal of Colloid and Interface Science 539 (2019) 332–341 Contents lists available at ScienceDirect Journal of Colloid and Interface Science journal homepage: www.elsevier.com/locate/jcis Regular Article Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines ⇑ Houjuan Qi a, Min Teng a, Miao Liu c, Shouxin Liu a, Jian Li a, Haipeng Yu a, Chunbo Teng c, Zhanhua Huang a, , ⇑ ⇑ ⇑ Hu Liu b,d, Qian Shao e, Ahmad Umar h, Tao Ding f, , Qiang Gao g,i, , Zhanhu Guo b, a College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China b Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA c College of Life Science, Northeast Forestry University, Harbin 150040, China d National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China e College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China f College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China g Department of Heterogeneous Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany h Department of Chemistry, Faculty of Sciences and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia i School of Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China graphical abstract article info abstract Article history: Nitrogen-doped carbon quantum dots (N-CQDs) were successfully synthesized using rice residue and gly- Received 4 November 2018 cine as carbon and nitrogen sources by one-step hydrothermal method.
    [Show full text]
  • Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications
    antibiotics Review Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications Yanyan Wu 1, Cong Li 2, Henny C. van der Mei 3, Henk J. Busscher 3,* and Yijin Ren 1 1 University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands; [email protected] (Y.W.); [email protected] (Y.R.) 2 College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Rd, Suzhou 215123, China; [email protected] 3 University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Nanoparticles possess unique features due to their small size and can be composed of different surface chemistries. Carbon quantum dots possess several unique physico-chemical and antibacterial activities. This review provides an overview of different methods to prepare carbon quantum dots from different carbon sources in order to provide guidelines for choosing methods and carbon sources that yield carbon quantum dots with optimal antibacterial efficacy. Antibacterial activities of carbon quantum dots predominantly involve cell wall damage and disruption of the matrix of infectious biofilms through reactive oxygen species (ROS) generation to cause dispersal of infecting pathogens that enhance their susceptibility to antibiotics. Quaternized carbon quantum dots from organic carbon sources have been found to be equally efficacious for controlling wound infection and pneumonia in rodents as antibiotics. Carbon quantum dots derived through heating Citation: Wu, Y.; Li, C.; van der Mei, of natural carbon sources can inherit properties that resemble those of the carbon sources they are H.C.; Busscher, H.J.; Ren, Y.
    [Show full text]
  • Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine
    nanomaterials Review Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine Lucie Bacakova 1,*, Julia Pajorova 1, Maria Tomkova 2, Roman Matejka 1 , Antonin Broz 1, Jana Stepanovska 1, Simon Prazak 1, Anne Skogberg 3 , Sanna Siljander 4 and Pasi Kallio 3 1 Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; [email protected] (J.P.); [email protected] (R.M.); [email protected] (A.B.); [email protected] (J.S.); [email protected] (S.P.) 2 Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; [email protected] 3 BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33014 Tampere, Finland; anne.skogberg@tuni.fi (A.S.); pasi.kallio@tuni.fi (P.K.) 4 Automation Technology and Mechanical Engineering, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, 33720 Tampere, Finland; sanna.siljander@tuni.fi * Correspondence: [email protected]; Tel.: +420-2-9644-3743 Received: 27 December 2019; Accepted: 21 January 2020; Published: 23 January 2020 Abstract: Nanocellulose/nanocarbon composites are newly emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as “classical” carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distributes the carbon nanoparticles in an aqueous environment.
    [Show full text]
  • Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment
    molecules Review Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment Mona Jani 1,*, Jose A. Arcos-Pareja 1 and Ming Ni 2,* 1 Department of Physical Sciences and Nanotechnology, Yachay Tech University, 100119 Urcuquí, Ecuador; [email protected] 2 GeneScript, Zhenjiang, Jiangsu 212000, China * Correspondence: [email protected] (M.J.); [email protected] (M.N.) Academic Editor: Minas M. Stylianakis Received: 21 February 2020; Accepted: 13 April 2020; Published: 26 October 2020 Abstract: With the rapid growth of industrialization, diverse pollutants produced as by-products are emitted to the air-water ecosystem, and toxic contamination of water is one of the most hazardous environmental issues. Various forms of carbon have been used for adsorption, electrochemical, and ion-exchange membrane filtration to separation processes for water treatment. The utilization of carbon materials has gained tremendous attention as they have exceptional properties such as chemical, mechanical, thermal, antibacterial activities, along with reinforcement capability and high thermal stability, that helps to maintain the ecological balance. Recently, engineered nano-carbon incorporated with polymer as a composite membrane has been spotlighted as a new and effective mode for water treatment. In particular, the properties of zero-dimensional (0D) carbon forms (fullerenes and carbon dots) have encouraged researchers to explore them in the field of wastewater treatment through membrane technologies as they are biocompatible, which is the ultimate requirement to ensure the safety of drinking water. Thus, the purpose of this review is to highlight and summarize current advances in the field of water purification/treatment using 0D carbon-polymer-based nanocomposite membranes.
    [Show full text]