The Dominance Order for Permutations Niccoló Castronuovo 1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

The Dominance Order for Permutations Niccoló Castronuovo 1 Introduction PU. M. A. Vol. 25 (2015), No.1, pp. 45 62 The dominance order for permutations Niccoló Castronuovo Dipartimento di Scienze Fisiche, Informatiche, Matematiche Università di Modena e Reggio Emilia Italy email: [email protected] (Received: September 14, 2014, and in revised form March 7, 2015) Abstract. We dene an order relation over Sn considering the Robinson-Schensted bijection and the dominance order over Young tableaux. This order relation makes Sn(k k − 1:::3 2 1) -the set of permutations of length n that avoid the pattern k k − 1:::3 2 1, k ≤ n- a principal lter in Sn. We study in detail these order relations on Sn(321) and Sn(4321), nding order-isomorphisms between these sets and sets of lattice paths. Mathematics Subject Classication(2010). 05A05, 05A19. Keywords: Robinson-Schensted bijection, Dyck path, 321-avoiding permutation, Young tableau, dominance order. 1 Introduction The study of particular order relations over sets of combinatorial objects can be a powerful tool to understand the structure of such sets. The present paper focuses on the set Sn of permutations of length n and his subset Sn(k k − 1:::3 2 1), namely, the set of permutations that avoid a descending pattern of length k (k ≤ n). The order relation that we study over this set is obtained by considering the dominance order E over T ab(n), the set of standard Young tableaux with n boxes, and the product order E × E over the set SY T (n) of pairs of standard Young tableaux of the same shape. This last relation induces, via the Robinson-Schensted bijection, an order relation over , called again dominance order, and hence, E Sn by restriction, over Sn(k k − 1:::3 2 1). The choice of this order E has two reasons: the rst one is the importance of the dominance order over the set of standard Young tableaux in representation theory (see e.g. [5]), the second one is that, as we will see, the posets have some interesting properties when or . (Sn(k k − 1:::3 2 1); E) k = 3 k = 4 In Section 2 we study the order over . The structure of the partially ordered set E Sn(k k − 1:::3 2 1) is quite tangled (for , it is neither a lattice, nor a graded poset), however, (Sn(k k − 1:::3 2 1); E) k ≥ 4 it has some remarkable properties, for example the fact that Sn(k k − 1:::3 2 1) is a principal lter in . (Sn; E) In Section 3 we restrict our attention to the case of k = 3. In the literature, several bijections between the set Dn of Dyck paths of semilength n and the subset of Sn of permutations avoiding a pattern of length 3 appear. Most of them are based on the bijections given in [11], [12] and [13]. In this paper, we consider the bijection φ given in [8] between Sn(321) and Dn. This bijection is an order isomorphism between and the distributive lattice (endowed with the following order: (Sn(321); E) Dn 45 DOI: 10.1515/puma-2015-0004 46 N. CASTRONUOVO a path is smaller than a path if and only lies above ). In particular, turns out to f g f g (Sn(321); E) be a distributive lattice. We show that the dominance order over Sn(321) can be described in terms of Knuth equivalences and use the map φ to nd some interesting partitions of the sets Sn(321) and Dn. In Section 4 we dene a bijection between Sn(4321) and a suitable subset of the set of Motzkin paths of length 2n. This bijection, restricted to the subset Sn(321) of Sn(4321) turns out to be nothing but the map φ dened in section 3. 2 An order over the set of permutations avoiding k k-1...321 We begin by recalling some basic notion about standard Young tableaux. A partition of the positive integer n is a non-increasing sequence of non-negative integers (λ1; λ2; λ3; :::) such that Pk ( is the greatest integer such that ). A partition of can be identied i=1 λi = n k λk > 0 n with a Ferrers diagram with n boxes, namely, a left-justied array of n empty boxes such that each row contains at most as many boxes as the preceding one. The Ferrers diagram corresponding to the partition (λ1; :::; λk) has k rows of length λ1; λ2; :::; λk, respectively. A standard Young Tableau P is a completion of a Ferrers diagram with the integers f1; 2; :::; ng such that it is strictly increasing along rows and columns; the corresponding partition is called the shape of P . For a detailed introduction to the combinatorics of Young tableaux and their applications in representation theory see e.g. [10]. Given a tableau P , for every 1 ≤ j ≤ n let Pj be the tableau induced by the elements f1; 2; :::; jg of P and denote by shPj the shape of the tableau Pj. We can identify the tableau P with the sequence of shapes (shP1; shP2; :::; shPn), with shPi ⊆ shPi+1, and, conversely, every such sequence gives rise to a standard tableau, since we have an order for the insertion of elements. Example 2.1 The standard Young tableau 1 2 3 7 4 5 6 can be identied with the sequence 0 1 B C B C B C B ; ; ; ; ; ; C B C @ A We recall that the dominance order between partitions of n is given by λ E τ if and only if λ1 + ::: + λj ≤ τ1 + ::: + τj for all j (for a detailed study of the lattice of partitions, see [6]). This order relation can be extended to an order over the set T ab(n) of standard Young tableaux with n boxes, called dominance order over standard tableaux, by setting P E Q (1) THE DOMINANCE ORDER FOR PERMUTATIONS 47 if and only if for all . This order is used in the representation theory of the shPj E shQj j ≤ n symmetric group and of the general linear group, see e.g. [5]. Example 2.2 The tableau 0 1 B C B C 1 2 B C = B ; ; ; ; C 3 5 B C @ A 4 is greater than the tableau 0 1 B C B C 1 3 B C = B ; ; ; ; C 2 5 B C @ A 4 Note that, in general, the dominance order dened in (1) does not yield a lattice structure over the set of standard Young tableaux. Consider for example the tableaux P = 1 2 3 7 and P 0 = 1 2 3 4 5 4 5 6 6 7 Then two incomparable lower bounds of P and P 0 are 1 2 3 7 and 1 2 3 . Since P covers 4 5 4 5 6 6 7 both these lower bounds, the inmum of P and P 0 does not exist. It will be useful to describe explicitly the covering relation associated with the dominance order. Proposition 2.3 If P , P 0 are two standard tableaux with the same number of boxes, P 0 covers P in the dominance order (in symbols, P 0 P ) if and only if P is obtained from P 0 by one of the following operations: (S) if shP = shP 0, choose one box lled with the integer i whose position is right and above the box lled with i + 1 and swap these two boxes. (M) if shP 6= shP 0, move one corner-box (i; j) lled with the integer k to the rst row below the i-th whose length is smaller than j, with the further condition that between the starting and the ending position of k there are no corner-boxes lled with an integer greater than k. 48 N. CASTRONUOVO Proof. First of all, note that the covering relation in the lattice of integer partitions with the dominance order is the following: the partition σ covers the partition τ if and only if the Ferrers diagram of τ is obtained by the Ferrers diagram of σ by moving one corner-box in position (i; j) to the rst row below the i-th whose length is smaller than j (see [6]). Now we proceed by induction on the number of boxes n. If n = 1; 2; 3 the proposition is trivial. Suppose it true for tableaux with at most n − 1 boxes and suppose that P and P 0 are two standard tableaux with boxes such that 0. Consider and 0 . Since 0 covers , 0 covers n P ≺ P Pn−1 Pn−1 P P Pn−1 Pn−1 and then, by the induction hypothesis, one of the following possibilities is true: is obtained from 0 by applying operation (S). • Pn−1 Pn−1 0 0 In this case, the shapes of P and P must be equal and P and P are obtained from Pn−1 and 0 , respectively, by adding one box (lled with ) in the same position. So we get from 0 Pn−1 n P P by applying operation (S). is obtained from 0 by applying the operation (M) to the box lled with the integer , • Pn−1 Pn−1 j j ≤ n − 1. In this case, and 0 are obtained from and 0 , respectively, by adding the box lled P P Pn−1 Pn−1 with n. Since P 0 covers P , the new box must be in a position not between the starting and the ending position of the box lled with j. So we get P from P 0 by applying the operation (M).
Recommended publications
  • Newton Polytopes in Algebraic Combinatorics
    Newton Polytopes in Algebraic Combinatorics Neriman Tokcan University of Michigan, Ann Arbor April 6, 2018 Neriman Tokcan Newton Polytopes in Algebraic Combinatorics Outline Newton Polytopes Geometric Operations on Polytopes Saturated Newton Polytope (SNP) The ring of symmetric polynomials SNP of symmetric functions Partitions - Dominance Order Newton polytope of monomial symmetric function SNP and Schur Positivity Some other symmetric polynomials Additional results Neriman Tokcan Newton Polytopes in Algebraic Combinatorics Newton Polytopes d A polytope is a subset of R ; d ≥ 1 that is a convex hull of finite d set of points in R : Convex polytopes are very useful for analyzing and solving polynomial equations. The interplay between polytopes and polynomials can be traced back to the work of Isaac Newton on plane curve singularities. P α The Newton polytope of a polynomial f = n c x α2Z ≥0 α 2 C[x1; :::; xn] is the convex hull of its exponent vectors, i.e., n Newton(f ) = conv(fα : cα 6= 0g) ⊆ R : Neriman Tokcan Newton Polytopes in Algebraic Combinatorics Geometric operations on Polytopes d Let P and Q be two polytopes in R , then their Minkowski sum is given as P + Q = fp + q : p 2 P; q 2 Qg: The geometric operation of taking Minkowski sum of polytopes mirrors the algebraic operation of multiplying polynomials. Properties: Pn Pn n conv( i=1 Si ) = i=1 conv(Si ); for Si ⊆ R : Newton(fg) = Newton(f ) + Newton(g); for f ; g 2 C[x1; :::; xn]: Newton(f + g) = conv(Newton(f ) [ Newton(g)): Neriman Tokcan Newton Polytopes in Algebraic Combinatorics Saturated Newton Polytope{SNP A polynomial has saturated Newton polytope (SNP) if every lattice point of the convex hull of its exponent vectors corresponds to a monomial.
    [Show full text]
  • Arxiv:1407.5311V2 [Math.CO] 29 Apr 2017 SB-Labeling
    SB-LABELINGS AND POSETS WITH EACH INTERVAL HOMOTOPY EQUIVALENT TO A SPHERE OR A BALL PATRICIA HERSH AND KAROLA MESZ´ AROS´ Abstract. We introduce a new class of edge labelings for locally finite lattices which we call SB-labelings. We prove for finite lattices which admit an SB-labeling that each open interval has the homotopy type of a ball or of a sphere of some dimension. Natural examples include the weak order, the Tamari lattice, and the finite distributive lattices. Keywords: poset topology, M¨obiusfunction, crosscut complex, Tamari lattice, weak order 1. Introduction Anders Bj¨ornerand Curtis Greene have raised the following question (personal communi- cation of Bj¨orner;see also [15] by Greene). Question 1.1. Why are there so many posets with the property that every interval has M¨obiusfunction equaling 0; 1 or −1? Is there a unifying explanation? This paper introduces a new type of edge labeling that a finite lattice may have which we dub an SB-labeling. We prove for finite lattices admitting such a labeling that each open interval has order complex that is contractible or is homotopy equivalent to a sphere of some dimension. This immediately yields that the M¨obiusfunction only takes the values 0; ±1 on all intervals of the lattice. The construction and verification of validity of such labelings seems quite readily achievable on a variety of examples of interest. The name SB-labeling was chosen with S and B reflecting the possibility of spheres and balls, respectively. This method will easily yield that each interval in the weak Bruhat order of a finite Coxeter group, in the Tamari lattice, and in any finite distributive lattice is homotopy equivalent to a ball or a sphere of some dimension.
    [Show full text]
  • Introduction to Algebraic Combinatorics: (Incomplete) Notes from a Course Taught by Jennifer Morse
    INTRODUCTION TO ALGEBRAIC COMBINATORICS: (INCOMPLETE) NOTES FROM A COURSE TAUGHT BY JENNIFER MORSE GEORGE H. SEELINGER These are a set of incomplete notes from an introductory class on algebraic combinatorics I took with Dr. Jennifer Morse in Spring 2018. Especially early on in these notes, I have taken the liberty of skipping a lot of details, since I was mainly focused on understanding symmetric functions when writ- ing. Throughout I have assumed basic knowledge of the group theory of the symmetric group, ring theory of polynomial rings, and familiarity with set theoretic constructions, such as posets. A reader with a strong grasp on introductory enumerative combinatorics would probably have few problems skipping ahead to symmetric functions and referring back to the earlier sec- tions as necessary. I want to thank Matthew Lancellotti, Mojdeh Tarighat, and Per Alexan- dersson for helpful discussions, comments, and suggestions about these notes. Also, a special thank you to Jennifer Morse for teaching the class on which these notes are based and for many fruitful and enlightening conversations. In these notes, we use French notation for Ferrers diagrams and Young tableaux, so the Ferrers diagram of (5; 3; 3; 1) is We also frequently use one-line notation for permutations, so the permuta- tion σ = (4; 3; 5; 2; 1) 2 S5 has σ(1) = 4; σ(2) = 3; σ(3) = 5; σ(4) = 2; σ(5) = 1 0. Prelimaries This section is an introduction to some notions on permutations and par- titions. Most of the arguments are given in brief or not at all. A familiar reader can skip this section and refer back to it as necessary.
    [Show full text]
  • Open Problems in Algebraic Combinatorics Blog Submissions
    Open Problems in Algebraic Combinatorics blog submissions Problem title Submitter Date Pages The rank and cranks Dennis Stanton Sept. 2019 2-5 Sorting via chip-firing James Propp Sept. 2019 6-7 On the cohomology of the Grassmannian Victor Reiner Sept. 2019 8-11 The Schur cone and the cone of log concavity Dennis White Sept. 2019 12-13 Matrix counting over finite fields Joel Brewster Lewis Sept. 2019 14-16 Descents and cyclic descents Ron M. Adin and Yuval Roichman Oct. 2019 17-20 Root polytope projections Sam Hopkins Oct. 2019 21-22 The restriction problem Mike Zabrocki Nov. 2019 23-25 A localized version of Greene's theorem Joel Brewster Lewis Nov. 2019 26-28 Descent sets for tensor powers Bruce W. Westbury Dec. 2019 29-30 From Schensted to P´olya Dennis White Dec. 2019 31-33 On the multiplication table of Jack polynomials Per Alexandersson and Valentin F´eray Dec. 2019 34-37 Two q,t-symmetry problems in symmetric function theory Maria Monks Gillespie Jan. 2020 38-41 Coinvariants and harmonics Mike Zabrocki Jan. 2020 42-45 Isomorphisms of zonotopal algebras Gleb Nenashev Mar. 2020 46-49 1 The rank and cranks Submitted by Dennis Stanton The Ramanujan congruences for the integer partition function (see [1]) are Dyson’s rank [6] of an integer partition (so that the rank is the largest part minus the number of parts) proves the Ramanujan congruences by considering the rank modulo 5 and 7. OPAC-001. Find a 5-cycle which provides an explicit bijection for the rank classes modulo 5, and find a 7-cycle for the rank classes modulo 7.
    [Show full text]
  • Math 586 Algebraic Combinatorics Presentation Topics and Problems Instructor: Alexander Yong This Document Will Be Updated Throughout the Semester
    Math 586 Algebraic combinatorics Presentation topics and problems Instructor: Alexander Yong This document will be updated throughout the semester. 1. Presentation topics Here are some possible topics. I am happy to make some suggestions about papers to look at to get you started. A presentation will be an explanation of the problem and main re- sults, as well as some computation of data. 1. Mobius inversion and the incidence algebra. 2. The combinatorial nullstellensatz (selected by Emily Heath). 3. The Jacobi-triple product identity 4. Geometric complexity theory. (Selected by William Linz) 5. Brill-Noether theory and set-valued tableaux. 6. Tropical Schur polynomials 7. K-orbit polynomials (e.g., involution Schubert polynomials) 8. Hessenberg varieties and Stanley's chromatic symmetric polynomial (Selected by Harshit Yadav) 9. CSM classes and the Aluffi-Mihalcea conjecture. 10. Monte Carlo methods and algebraic combinatorics. 11. Symmetric group characters as symmetric functions (Orellana-Zabrocki). Note, this topic is not asking about the textbook representation theory statement, but rather something novel due to the two listed mathematicians. (Selected by Simon Lin.) 12. Generalized permutahedra. (Selected by Nicole Yamzon.) 13. Matroid invariants. (Selected by Ramon Garcia Alvarez) 14. The amplituhedron (note the colloquium talk by Hugh Thomas) 15. Total positivity and the Grassmannian. (Selected by Gidon Orelowitz.) 16. \The Complexity of Generating Functions for Integer Points in Polyhedra and Beyond" by Alexander Barvinok (selected by Colleen Robichaux). 17. Applications of Lagrange inversion. 18. Asympototics of generating series. 19. Theory of species (generating series) 20. Tableau Kombinatorics (K-theory); we will partly cover this in class, but there's much more to talk about.
    [Show full text]
  • Dual Equivalence Graphs I: a Combinatorial Proof of Llt and Macdonald Positivity
    DUAL EQUIVALENCE GRAPHS I: A COMBINATORIAL PROOF OF LLT AND MACDONALD POSITIVITY SAMI H. ASSAF Abstract. We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. By constructing a graph on ribbon tableaux which we transform into a dual equivalence graph, we give a combinatorial proof of the symmetry and Schur positivity of the ribbon tableaux generating functions introduced by Lascoux, Leclerc and Thibon. Using Haglund’s formula for the transformed Macdonald polynomials, this also gives a combinatorial formula for the Schur expansion of Macdonald polynomials. 1. Introduction The immediate purpose of this paper is to establish a combinatorial formula for the Schur coefficients of LLT polynomials which, as a corollary, yields a combinatorial formula for the Schur coefficients of Macdonald polynomials. Our real purpose, however, is not only to obtain these results, but also to introduce a new combinatorial construction, called a dual equivalence graph, by which one can establish the symmetry and Schur positivity of functions expressed in terms of monomials. The transformed Macdonald polynomials, Hµ(x; q,t), a transformation of the polynomials introduced by Macdonald [Mac88] in 1988, are defined to be the unique symmetric functions satisfying certain triangularity e and orthogonality conditions. The existence of functions satisfying these conditions is a theorem, from which it follows that the Hµ(x; q,t) form a basis for symmetric functions in two additional parameters. The Kostka- Macdonald coefficientse , denoted Kλ,µ(q,t), give the change of basis from Macdonald polynomials to Schur functions, namely, e Hµ(x; q,t)= Kλ,µ(q,t)sλ(x).
    [Show full text]
  • POSETS : a Mathematica Package PART 1: Basic Commands and Families of Posets
    POSETS : A Mathematica Package PART 1: Basic Commands and Families of Posets Curtis Greene, Eugenie Hunsicker, Department of Mathematics, Haverford College 19041, July 1990 Updates 1992-94: John Dollhopf, Sam Hsiao, Curtis Greene Updates 2008: Erica Greene, Curtis Greene Updates 2010-12: Ian Burnette, Curtis Greene 1. Introduction This document illustrates a Mathematica package designed to generate, display, and explore finite partially ordered sets ("posets"), emphasizing properties of use in combinatorics. The package has two distinctive features: (1) a large repertoire of built-in examples (Boolean lattices, subword posets, lattices of partitions, distributive lattices, Young's lattice, Bruhat orders, etc.), and (2) the ability to generate a poset directly from its formal definition, i.e., from a Mathematica program defining its "covering function". A poset may also be defined by listing its covering pairs, or by giving any generating set of ordered pairs, or the incidence matrix corresponding to such a relation. In addition, there are tools for constructing new posets from old: product and sum, subposet, distributive lattice of order ideals, etc. Once a poset has been generated (“built”), a large number of additional tools are available for studying its combina- torial structure. These existing tools reflect the authors' combinatorial interests: enumerative invariants, chains, multichains, antichains, rank generating functions, Mobius functions, linear extensions, and related topics. A good reference for these topics is Richard Stanley's book, Enumerative Combinatorics V1 (Wadsworth, 1986). About this documentation: our intention has not been to write a "users manual", but rather to give an informal demonstration of principal features. The documentation consists of two segments: Part 1 (this notebook) illustrates the basic commands by applying them to some well-known combinatorial families of posets.
    [Show full text]
  • Nonstandard Quantum Group for the Kronecker Problem
    GEOMETRIC COMPLEXITY THEORY IV: NONSTANDARD QUANTUM GROUP FOR THE KRONECKER PROBLEM JONAH BLASIAK, KETAN D. MULMULEY, AND MILIND SOHONI Dedicated to Sri Ramakrishna Abstract. The Kronecker coefficient gλµν is the multiplicity of the GL(V ) × GL(W )- irreducible Vλ ⊗ Wµ in the restriction of the GL(X)-irreducible Xν via the natural map GL(V ) × GL(W ) → GL(V ⊗ W ), where V, W are C-vector spaces and X = V ⊗ W . A fundamental open problem in algebraic combinatorics is to find a positive combinatorial formula for these coefficients. We construct two quantum objects for this problem, which we call the nonstandard quantum group and nonstandard Hecke algebra. We show that the nonstandard quantum group has a compact real form and its representations are completely reducible, that the nonstandard Hecke algebra is semisimple, and that they satisfy an analog of quantum Schur-Weyl duality. Using these nonstandard objects as a guide, we follow the approach of Adsul, Sohoni, and Subrahmanyam [1] to construct, in the case dim(V ) = dim(W ) = 2, a representation ˇ Xν of the nonstandard quantum group that specializes to ResGL(V )×GL(W )Xν at q = 1. We then define a global crystal basis +HNSTC(ν) of Xˇν that solves the two-row Kronecker problem: the number of highest weight elements of +HNSTC(ν) of weight (λ, µ) is the Kronecker coefficient gλµν . We go on to develop the beginnings of a graphical calculus for this basis, along the lines of the Uq(sl2) graphical calculus from [19], and use this to organize the crystal components of +HNSTC(ν) into eight families.
    [Show full text]
  • Comparing Two Perfect Bases by Anne Dranowski a Thesis Submitted In
    Comparing two perfect bases by Anne Dranowski A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto © Copyright 2020 by Anne Dranowski Abstract Comparing two perfect bases Anne Dranowski Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2020 We study a class of varieties which generalize the classical orbital varieties of Joseph. We show that our generalized orbital varieties are the irreducible components of a Mirkovi´c{Vybornov slice to a nilpotent orbit, and can be labeled by semistandard Young tableaux. Furthermore, we prove that Mirkovi´c{Vilonencycles are obtained by applying the Mirkovi´c{ Vybornov isomorphism to generalized orbital varieties and taking a projective closure, refining Mirkovi´cand Vybornov's result. As a consequence, we are able to use the Lusztig datum of a Mirkovi´c{Vilonencycle to determine the tableau labeling the generalized orbital variety which maps to it, and, hence, the ideal of the generalized orbital variety itself. By homogenizing we obtain equations for the cycle we started with, which is useful for computing various equivariant invariants such as equivariant multiplicity. As an application, we show that the Mirkovi´c{Vilonen basis differs from Lusztig's dual sem- icanonical basis in type A5. This is significant because it is a first example of two perfect bases which are not the same. Our comparison relies heavily on the theory of measures developed in [BKK19], so we include what we need. We state a conjectural combinatorial \formula" for the ideal of a generalized orbital variety in terms of its tableau.
    [Show full text]
  • The Hopf Algebra of Odd Symmetric Functions
    The Hopf algebra of odd symmetric functions Alexander P. Ellis and Mikhail Khovanov September 18, 2013 Abstract We consider a q-analogue of the standard bilinear form on the commutative ring of symmetric functions. The q = −1 case leads to a Z-graded Hopf superalgebra which we call the algebra of odd symmetric functions. In the odd setting we describe counterparts of the elementary and complete symmetric functions, power sums, Schur functions, and combinatorial interpretations of associated change of basis relations. Contents 1 Introduction 2 1.1 Symmetricgroupsandcategorification. ....... 2 1.2 Outlineofthispaper .............................. ... 3 1.3 Acknowledgments ................................. 4 2 The definition of the q-Hopf algebra Λ 5 2.1 The category of q-vectorspacesandabilinearform . 5 2.2 Odd completeandelementarysymmetricfunctions . ......... 9 2.3 (Anti-)automorphisms, generating functions, and the antipode. 18 2.4 Relationtoquantumquasi-symmetricfunctions . .......... 21 3 Other bases of Λ 22 arXiv:1107.5610v2 [math.QA] 18 Sep 2013 3.1 Dual bases: odd monomial and forgotten symmetric functions......... 22 3.2 Primitive elements, odd power symmetric functions, and the center of Λ . 25 3.3 OddSchurfunctions ............................... 26 4 The even and odd RSK correspondences 31 4.1 TheclassicalRSKcorrespondence. ....... 31 4.2 ProofoftheoddRSKcorrespondence . ..... 34 5 Appendix: Data 36 5.1 Basesof Λ ....................................... 36 5.2 Thebilinearform ................................. 38 References 41 2 1 Introduction 1.1 Symmetric groups and categorification The ring Λ of symmetric functions plays a fundamental role in several areas of mathematics. It decategorifies the representation theory of the symmetric groups, for it can be identified with the direct sum of Grothendieck groups of group rings of the symmetric groups: ∼ Λ = ⊕ K0(C[Sn]), n≥0 where any characteristic 0 field can be used instead of C.
    [Show full text]
  • Symmetric Functions
    7 Symmetric Functions 7.1 Symmetric Functions in General The theory of symmetric functions has many applications to enumerative combi- natorics, as well as to such other branches of mathematics as group theory, Lie algebras, and algebraic geometry. Our aim in this chapter is to develop the basic combinatorial properties of symmetric functions; the connections with algebra will only be hinted at in Sections 7.18 and 7.24, Appendix 2, and in some exercises. Let x = (x\, Jt2,...) be a set of indeterminates, and let n eN. A homogeneous symmetric function of degree n over a commutative ring R (with identity) is a formal power series where (a) a ranges over all weak compositions a = («i, «2, • • •) of n (of infinite a x length), (b) ca e R, (c) x stands for the monomial x\ x£ ..., and (d) /(x^i), Xw(2), • • •) = f(x\,X2,.. •) for every permutation w of the positive integers P. (A symmetric function of degree 0 is just an element of R.) Note that the term "symmetric function" is something of a misnomer; f(x) is not regarded as a function but rather as a formal power series. Nevertheless, for historical reasons we adhere to the above terminology. The set of all homogeneous symmetric functions of degree n over R is denoted n n A R. Clearly if /, g e A R and a, b e R, then af + bg e A\\ in other words, A^ is an R-module. For our purposes it will suffice to take R = Q (or sometimes Q with some indeterminates adjoined), so A^ is a Q-vector space.
    [Show full text]
  • DOMINANCE ORDER on SIGNED INTEGER PARTITIONS 11 from the Direct Product Operation, Hence the Result Follows by (V)
    DOMINANCE ORDER ON SIGNED INTEGER PARTITIONS C. BISI, G. CHIASELOTTI, T. GENTILE, P.A. OLIVERIO Abstract. In 1973 Brylawski introduced and studied in detail the dominance partial order on the set P ar(m) of all the integer partitions of a fixed positive integer m. As it is well known, the dominance order is one of the most important partial orders on the finite set P ar(m). Therefore it is very natural to ask how it changes if we allow the summands of an integer partition to take also negative values. In such a case, m can be an arbitrary integer and P ar(m) becomes an infinite set. In this paper we extend the classical dominance order in this more general case. In particular, we consider the resulting lattice P ar(m) as an infinite increasing union on n of a sequence of finite lattices O(m; n). The lattice O(m; n) can be considered a generalization of the Brylawski lattice. We study in detail the lattice structure of O(m; n). 1. Introduction The dominance order for the integer partitions of a fixed positive integer m was introduced and studied by Brylawski in [11]. This partial order is very important in the symmetric functions theory (see [22]) and in symmetric group representation theory (see [26]). Up to now the dominance order has been studied only for integer partitions with positive summands. In this case, the set of all the integer partitions having fixed sum m is a finite set. What happens if we try to extend this order in the event that the summands of the partitions can also have negative value? In [6] and [20], the authors have been recently studied some arithmetical properties of the signed integer partitions.
    [Show full text]