Taphonomy of the Lower Jurassic
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Discinisca Elslooensis Sp. N. Conglomerate
bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre, 73: 185-194, 2003 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 73: 185-194, 2003 Bosquet's (1862) inarticulate brachiopods: Discinisca elslooensis sp. n. from the Elsloo Conglomerate by Urszula RADWANSKA & Andrzej RADWANSKI Radwanska, U. & Radwanski, A., 2003. Bosquet's (1862) inarticu¬ Introduction late brachiopods: Discinisca elslooensis sp. n. from the Elsloo Con¬ glomerate. Bulletin de l'Institut royal des Sciences naturelles de Bel¬ gique, Sciences de la Terre, 73: 185-194, 2 pis.; Bruxelles-Brussel, The present authors, during research on fossil repré¬ March 31, 2003. - ISSN 0374-6291 sentatives of the inarticulate brachiopods of the genus Discinisca Dall, 1871, from the Miocene of Poland (Radwanska & Radwanski, 1984), Oligocène of Austria (Radwanska & Radwanski, Abstract 1989), and topmost Cretac- eous of Poland (Radwanska & Radwanski, 1994), have been informed A revision of the Bosquet (1862) collection of inarticulate brachio¬ by Annie V. Dhondt, that well preserved pods, acquired about 140 years ago by the Royal Belgian Institute of material of these invertebrates from the original collec¬ Natural Sciences, shows that the whole collection, from the Elsloo tion of Bosquet (1862) has been acquired by the Royal Conglomerate, contains taxonomically conspecific material, despite its variable labelling and taxonomie interprétation by previous authors. Belgian Institute of Natural Sciences in 1878. Annie V. The morphological features of complete shells, primarily of their Dhondt has kindly invited the present authors to revise ventral valves, clearly indicate that these inarticulate brachiopods this material to estimate its value and significance within can be well accommodated within the genus Discinisca Dall, 1871. -
Geochemical Characteristics of Late Ordovician Shales in the Upper Yangtze Platform, South China: Implications for Redox Environmental Evolution
minerals Article Geochemical Characteristics of Late Ordovician Shales in the Upper Yangtze Platform, South China: Implications for Redox Environmental Evolution Donglin Lin 1,2,3, Shuheng Tang 1,2,3,*, Zhaodong Xi 1,2,3, Bing Zhang 1,2,3 and Yapei Ye 1,2,3 1 School of Energy Resource, China University of Geosciences, Beijing 100083, China; [email protected] (D.L.); [email protected] (Z.X.); [email protected] (B.Z.); [email protected] (Y.Y.) 2 Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education, Beijing 100083, China 3 Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China * Correspondence: [email protected]; Tel.: +86-134-8882-1576 Abstract: Changes to the redox environment of seawater in the Late Ordovician affect the process of organic matter enrichment and biological evolution. However, the evolution of redox and its underlying causes remain unclear. This paper analyzed the vertical variability of main, trace elements and δ34Spy from a drill core section (well ZY5) in the Upper Yangtze Platform, and described the redox conditions, paleoproductivity and paleoclimate variability recorded in shale deposits of the P. pacificus zone and M. extraordinarius zone that accumulated during Wufeng Formation. The results showed that shale from well ZY5 in Late Ordovician was deposited under oxidized water environment, and Citation: Lin, D.; Tang, S.; Xi, Z.; Zhang, B.; Ye, Y. Geochemical there are more strongly reducing bottom water conditions of the M. extraordinarius zone compared Characteristics of Late Ordovician with the P. -
Jocelyn A. Sessa
Jocelyn A. Sessa Current: Assistant Curator of Invertebrate Paleontology, Academy of Natural Sciences, & Assistant Professor, Department of Biodiversity, Earth & Environmental Science of Drexel University. Past Positions: 2016 to 2017 Senior Scientist in Paleontology & Education, American Museum of Natural History. Postdoctoral Fellowships: 2012 to 2016 Departments of Paleontology & Education, American Museum of Natural History. 2010 to 2012 Department of Paleobiology, Smithsonian National Museum of Natural History. 2009 to 2010 Department of Earth Sciences, Syracuse University. Education: Ph.D., 2009 Department of Geosciences, Pennsylvania State University, University Park, PA. M.S., 2003 Department of Geology, University of Cincinnati, Cincinnati, Ohio. B.A., 2000 Department of Geological Sciences, State University of New York at Geneseo, Geneseo, NY. Cum laude, minor in Environmental Studies. Publications (* indicates student author; for student work, ‡ indicates corresponding author): Buczek, A.J.*, Hendy, A., Hopkins, M. Sessa, J.A.‡ 2020. On the reconciliation of biostratigraphy and strontium isotope stratigraphy of three southern Californian Plio-Pleistocene formations. Geological Society of America Bulletin 132 ; doi.org/10.1130/B35488.1. Oakes, R.L., Sessa, J.A. 2020. Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin. Biogeosciences 17:1975–1990; doi.org/10.5194/bg-17-1975-2020. Oakes, R.L., Hill Chase, M., Siddall, M.E., Sessa, J.A. 2020. Testing the impact of two key scan parameters on the quality and repeatability of measurements from CT scan data. Palaeontologia Electronica 23(1):a07; doi.org/10.26879/942. Ferguson, K.*, MacLeod, K.G.‡, Landman, N.H., Sessa, J.A.‡ 2019. -
A New Species of Inarticulate Brachiopods, Discinisca Zapfei Sp.N., from the Upper Triassic Zlambach Formation
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 102A Autor(en)/Author(s): Radwanski Andrzej, Summesberger Herbert Artikel/Article: A new species of inarticulate brachiopods, Discinisca zapfei sp.n., from the Upper Triassic Zlambach Formation (Northern Calcareous Alps, Austria), and a discussion of other Triassic disciniscans 109-129 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 102 A 109–129 Wien, Februar 2001 A new species of inarticulate brachiopods, Discinisca zapfei sp.n., from the Upper Triassic Zlambach Formation (Northern Calcareous Alps, Austria), and a discussion of other Triassic disciniscans by Andrzej RADWANSKI1 & Herbert SUMMESBERGER2 (With 1 text-figure and 2 plates) Manuscript submitted on June 6th 2000, the revised manuscript on October 31st 2000. Abstract A new species of inarticulate brachiopods, Discinisca zapfei sp.n., is established for specimens collected by the late Professor Helmuth ZAPFE from the Zlambach Formation (Upper Triassic, Norian to Rhaetian) of the Northern Calcareous Alps (Austria). The collection, although small, offers a good insight into the morpho- logy of both the dorsal and the brachial valve of the shells, as well as into their mode of growth in clusters. The primary shell coloration is preserved, probably due to a rapid burial (? tempestite) of the clustered brachiopods in the living stage. A review and/or re-examination of other Triassic disciniscan brachiopods indicates that the newly established species, Discinisca zapfei sp.n., is closer to certain Paleogene-Neogene and/or present-day species than to any of the earlier described Triassic forms. -
Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. -
A New Species of Inarticulate Brachiopods, Discinisca Steiningeri Sp
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 1989 Band/Volume: 90A Autor(en)/Author(s): Radwanska Urszula, Radwanski Andrzej Artikel/Article: A new species of inarticulate brachiopods, Discinisca steiningeri sp. nov., from the Oligocene (Egerian) of Plesching near Linz, Austria 67-82 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 90 A 67-82 Wien, Jänner 1989 A new species of inarticulate brachiopods, Discinisca steiningeri sp. nov., from the Late Oligocene (Egerian) of Plesching near Linz, Austria By U. RADWANSKA1) & A. RADWANSKI1) (With 2 textfigures and 4 plates) Manuscript submitted on January 21, 1988 Abstract A new species of inarticulate brachiopods, Discinisca steiningeri sp. n., is established for the specimens occurring in the Linz Sands (Egerian stage) exposed at Plesching near Linz, Austria. A relatively rich material of isolated dorsal valves allows the morphological variability of the new species to be recognized and to be compared with that known in other species of the genus, both modern and ancient. The specific characters of the new species are similar to some modern species of Discinisca which are typical of the western hemisphere but as yet unknown in the Tertiary deposits of Europe. A comparison with the few other species reported from the Miocene deposits of the Vienna Basin and the Fore-Carpathian Depression shows the distinctness of the new species from the remaining phyletic stocks, which are represented by occasional occurrences of the genus in the ancient sea systems of Central Europe. -
Journal of Paleontology Gladius-Bearing Coleoids from The
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications Jattiot, Romain ; Brayard, Arnaud ; Fara, Emmanuel ; Charbonnier, Sylvain DOI: https://doi.org/10.1017/jpa.2014.13 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-109764 Journal Article Published Version Originally published at: Jattiot, Romain; Brayard, Arnaud; Fara, Emmanuel; Charbonnier, Sylvain (2015). Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications. Journal of Paleontology, 89(01):148-167. DOI: https://doi.org/10.1017/jpa.2014.13 Journal of Paleontology http://journals.cambridge.org/JPA Additional services for Journal of Paleontology: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications Romain Jattiot, Arnaud Brayard, Emmanuel Fara and Sylvain Charbonnier Journal of Paleontology / Volume 89 / Issue 01 / January 2015, pp 148 - 167 DOI: 10.1017/jpa.2014.13, Published online: 09 March 2015 Link to this article: http://journals.cambridge.org/abstract_S0022336014000134 How to cite this article: Romain Jattiot, Arnaud Brayard, Emmanuel Fara and Sylvain Charbonnier (2015). Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications. Journal of Paleontology, 89, pp 148-167 doi:10.1017/jpa.2014.13 Request Permissions : Click here Downloaded from http://journals.cambridge.org/JPA, IP address: 46.127.66.96 on 10 Mar 2015 Journal of Paleontology, 89(1), 2015, p. -
Persistent Global Marine Euxinia in the Early Silurian ✉ Richard G
ARTICLE https://doi.org/10.1038/s41467-020-15400-y OPEN Persistent global marine euxinia in the early Silurian ✉ Richard G. Stockey 1 , Devon B. Cole 2, Noah J. Planavsky3, David K. Loydell 4,Jiří Frýda5 & Erik A. Sperling1 The second pulse of the Late Ordovician mass extinction occurred around the Hirnantian- Rhuddanian boundary (~444 Ma) and has been correlated with expanded marine anoxia lasting into the earliest Silurian. Characterization of the Hirnantian ocean anoxic event has focused on the onset of anoxia, with global reconstructions based on carbonate δ238U 1234567890():,; modeling. However, there have been limited attempts to quantify uncertainty in metal isotope mass balance approaches. Here, we probabilistically evaluate coupled metal isotopes and sedimentary archives to increase constraint. We present iron speciation, metal concentration, δ98Mo and δ238U measurements of Rhuddanian black shales from the Murzuq Basin, Libya. We evaluate these data (and published carbonate δ238U data) with a coupled stochastic mass balance model. Combined statistical analysis of metal isotopes and sedimentary sinks provides uncertainty-bounded constraints on the intensity of Hirnantian-Rhuddanian euxinia. This work extends the duration of anoxia to >3 Myrs – notably longer than well-studied Mesozoic ocean anoxic events. 1 Stanford University, Department of Geological Sciences, Stanford, CA 94305, USA. 2 School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. 3 Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA. 4 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, UK. 5 Faculty of Environmental Sciences, Czech University of Life Sciences ✉ Prague, Prague, Czech Republic. -
Insights Into the Role of Redox State in Burgess 1 Shale-Type Taphonomic
University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences 2018-09 On the edge of exceptional preservation: insights into the role of redox state in Burgess Shale-type taphonomic windows from the Mural Formation, Alberta, Canada Sperling, EA http://hdl.handle.net/10026.1/11604 10.1042/ETLS20170163 Emerging Topics in Life Sciences All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. 1 On the edge of exceptional preservation: insights into the role of redox state in Burgess 2 Shale-type taphonomic windows from the Mural Formation, Alberta, Canada 3 4 5 6 Erik A. Sperling1*, Uwe Balthasar2, Christian B. Skovsted3 7 8 1 Department of Geological Sciences, Stanford University, Stanford, CA, USA 94305 9 10 2 School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, 11 Plymouth, United Kingdom 12 13 3 Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-104 05 14 Stockholm, Sweden 15 16 17 18 19 20 21 22 23 * Corresponding author: 24 Dr. Erik A. Sperling 25 Department of Geological Sciences 26 Stanford University 27 Stanford, CA, USA 94305 28 650-736-0852 (v) 29 [email protected] 30 31 32 Keywords: Cambrian; Mural Formation; Burgess Shale-type preservation; Oxygen; 33 taphonomy; iron reduction 34 35 36 1 37 Abstract 38 39 Animals originated in the Neoproterozoic and ‘exploded’ into the fossil record in the 40 Cambrian. -
Coincidence of Photic Zone Euxinia and Impoverishment of Arthropods
www.nature.com/scientificreports OPEN Coincidence of photic zone euxinia and impoverishment of arthropods in the aftermath of the Frasnian- Famennian biotic crisis Krzysztof Broda1*, Leszek Marynowski2, Michał Rakociński1 & Michał Zatoń1 The lowermost Famennian deposits of the Kowala quarry (Holy Cross Mountains, Poland) are becoming famous for their rich fossil content such as their abundant phosphatized arthropod remains (mostly thylacocephalans). Here, for the frst time, palaeontological and geochemical data were integrated to document abundance and diversity patterns in the context of palaeoenvironmental changes. During deposition, the generally oxic to suboxic conditions were interrupted at least twice by the onset of photic zone euxinia (PZE). Previously, PZE was considered as essential in preserving phosphatised fossils from, e.g., the famous Gogo Formation, Australia. Here, we show, however, that during PZE, the abundance of arthropods drastically dropped. The phosphorous content during PZE was also very low in comparison to that from oxic-suboxic intervals where arthropods are the most abundant. As phosphorous is essential for phosphatisation but also tends to fux of the sediment during bottom water anoxia, we propose that the PZE in such a case does not promote the fossilisation of the arthropods but instead leads to their impoverishment and non-preservation. Thus, the PZE conditions with anoxic bottom waters cannot be presumed as universal for exceptional fossil preservation by phosphatisation, and caution must be paid when interpreting the fossil abundance on the background of redox conditions. 1 Euxinic conditions in aquatic environments are defned as the presence of H2S and absence of oxygen . If such conditions occur at the chemocline in the water column, where light is available, they are defned as photic zone euxinia (PZE). -
Newsletter Number 69
The Palaeontology Newsletter Contents 69 Association Business 2 Association Meetings 9 Progressive Palaeontology 12 News 13 From our correspondents Here be dragons 17 For a very specialized audience only 23 PalaeoMath 101: Size & shape coords 26 Meeting Reports 37 Mystery Fossils 14 & 15 (and 13) 64 Future meetings of other bodies 67 Reporter: Reviewing peer review 71 Sylvester-Bradley Reports 77 Soapbox: On the mathematics of life 83 Book Reviews 88 Special Papers 79 & 80 104–107 Palaeontology vol 51 parts 5 & 6 108–110 Reminder: The deadline for copy for Issue no 70 is 23rd February 2009. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 69 2 Association Business Annual Meeting Notification is given of the 53rd Annual General Meeting and Annual Address This will be held at the University of Glasgow on 20th December 2008, following the scientific sessions. Please note that following the October Council meeting, an additional item has been added to the agenda published in Newsletter 68. Agenda 1. Apologies for absence 2. Minutes of the 52nd AGM, University of Uppsala 3. Annual Report for 2007 (published in Newsletter 68) 4. Accounts and Balance Sheet for 2007 (published in Newsletter 68) 5. Increase in annual subscriptions 6. Election of Council and vote of thanks to retiring members 7. Palaeontological Association Awards 8. Annual address H. A. Armstrong Secretary DRAFT AGM MINUTES 2007 Minutes of the Annual General Meeting held on Monday, 17th December 2007 at the University of Uppsala. 1. Apologies for absence: Prof. Batten; Prof. J. C. W. Cope; Dr P. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS PART OF VOLUME LIII CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 4.-CLASS1F1CAT10N AND TERMINOLOGY OF THE CAMBRIAN BRACHIOPODA With Two Plates BY CHARLES D. WALCOTT No. 1811 CITY OF WASHINGTON published by the smithsonian institution October 13, 1908] CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 4.—CLASSIFICATION AND TERAIINOLOGY OF THE CAMBRIAN BRACHIOPODA^ By CHARLES D. WALCOTT (With Two Plates) CONTENTS Page Introduction i.^g Schematic diagram of evclution 139 Development in Cambrian time 141 Scheme of classification 141 Structure of the shell 149 Microscopic structure of the Cambrian Brachiopcda 150 Terminology relating to the shell 153 Definitions 154 INTRODUCTION My study of the Cambrian Brachiopoda has advanced so far that it is decided to pubHsh, in advance of the monograph,- a brief out- Hne of the classification, accompanied by (a) a schematic diagram of evolution and scheme of classification; (&) a note, with a diagram, on the development in Cambrian time; (c) a note on the structural characters of the shell, as this profoundly affects the classification; and (d) a. section on the terminology used in the monograph. The monograph, illustrated by 104 quarto plates and numerous text fig- ures, should be ready for distribution in the year 1909. SCHEMATIC DIAGRAM OF EVOLUTION In order to formulate, as far as possible, in a graphic manner a conception of the evolution and lines of descent of the Cambrian Brachiopoda, a schematic diagram (see plate 11) has been prepared for reference. It is necessarily tentative and incomplete, but it will serve to point out my present conceptions of the lines of evolution of the various genera, and it shows clearly the very rapid development of the primitive Atrematous genera in early Cambrian time.