Appearance and Behaviour of Immature Guillemots and Razorbills at Sea P

Total Page:16

File Type:pdf, Size:1020Kb

Appearance and Behaviour of Immature Guillemots and Razorbills at Sea P Appearance and behaviour of immature Guillemots and Razorbills at sea P. Hope Jones and E. I. S. Rees he young of both Guillemot Una aalge and Razorbill Alca torda have an Tintermediately precocial pattern of development (Sealy 1972). That is, the juvenile is led out to sea by one adult, usually the male parent (Birkhead 1984), when its wing development is sufficient for fluttering down from the cliff and diving, but when it has reached only one-third to one-half of the adult weight (Birkhead 1977). Although the departure of the juveniles from the colonies has been described by several authors (e.g. Greenwood 1964), very little has been recorded about their life over the next few months. The departure has often been referred to as fledging, though Burger (1980) considered that the term fledging should be reserved for the stage when they actually fly and become independent of the adult. The primaries, secondar• ies and tail feathers are grown for the first time during the post-juvenile moult of wing-coverts and body feathers in July to October: the first proper flight is therefore achieved with the development of first-winter plumage. This paper describes some aspects of the appearance and behaviour of these immature auks seen at sea off western Britain in the period between early July and mid September, when the adults undergo their complete moult to winter plumage. Throughout this paper, the word 'adult' refers to indi• viduals at least 12 months of age (i.e. in their first summer or older). A series of cruises was made, mainly in the Irish Sea, during 1979-83 with the main aim of studying the distribution and abundance of the auks during the late summer, when the whole population is flightless. Noting appear• ances and behaviour was supplementary to the primary objectives, but the paucity of knowledge prompts us to publish data that are often more anecdotal than systematic. Most of the data presented here were gathered in 1983, but additional observations extending back to the early 1970s have also been drawn upon. Virtually all the observations were made from ships. The influence of the observer's relatively massive platform cannot, therefore, be ruled out; nor was it possible to observe birds for more than a few minutes, even when the ships were stationary. Reaction varied from near panic to apparent indif• ference. Occasional birds were seen actively to approach the stationary or slow-moving research vessels and to dive under them. Trawler-following by 370 [Brit. Birds 78: 370-377, August 1985] Immature Guillemots and Razorbills at sea 371 Guillemots in the Irish Sea has been reported by Hillis (1973) and Watson (1981). 11 seems that, particularly in areas where the birds are used to ships, and when the observer is on a vessel not moving too fast or throwing up a big bow wave, the behaviour is likely to be fairly normal. In the channels into the Mersey, we have seen auks apparently unconcerned by the passing of large ships. By contrast, in more remote localities off the west of Scotland, they seem to react at longer ranges. Distinguishing juveniles and first-winters from adults Throughout July, there was normally no problem in distinguishing the juvenile Guillemots at ranges up to 300m and beyond (with 10X binocu• lars). The main criteria were their small size, relative to the adults, which they usually closely accompanied, and their high-pitched calls. The call is so distinctive and penetrating that, when light and sea conditions make birds on the water inconspicuous, the juveniles are often detected from their calls before being spotted. Subsidiary distinguishing features stem from their behaviour and head colour. Through August, juvenile Guillemots continued to be distinguishable by the same four criteria, but by mid August juvenile Razorbills were accompanying their apparent guardians less closely or joining the parties of adults (first-summers and older) so that they became less obvious in the time available for scrutiny from moving ships. By mid September, the immatures of both species (then mainly in full first-winter plumage) had grown to be almost as big as the adults. Both birds of such couples were almost always in full winter plumage, so that, although on behavioural grounds it was often suspected that couples seen together were a first-winter and its guardian, they could not certainly be ascribed as such. When identified by call, the September first-winter Guillemots looked sleeker than the fuller-shaped adults, with no flank streaks; they also looked distinctly whiter about the head, though by no Table 1. Group size of Irish Sea Guillemots Una aalge, where the two age-classes for all individuals were firmly established, July-August 1983 Groups larger than nine may be under-represented because of the need for rapid recording as the ship moved past; there was little time for careful separation into age-classes, and many larger groups were separated only by species; those in the table were 11 and 26 (each with one juvenile) and 16 (with two juveniles). No. of accom• panying Number of juveniles adults 1 2 3 4 1 377 (75%) 0 0 0 2 67(13%) 24 (55%) 0 0 3 32 ( 6%) 8(18%) 3 0 4 11 ( 2%) 4(9%) 0 1 5 7( 1%) 3( 7%) 1 0 6 4( 1%) 1(2%) 0 0 7 3 1 ( 2%) 0 0 8 3 0 0 0 9 0 2( 3%) 0 0 >9 2 1(2%) 0 0 Total no. of records 506 44 4 1 372 Immature Guillemots and Razorbills at sea means all of them showed white on the nape. (Flank streaks on adult Guillemots in the Irish Sea varied from distinctly dark to barely visible.) Group size During at least the first month after the time they would have left the colonies, the juveniles of both species were usually found accompanied by only one adult. Tables 1 and 2 show numbers of juveniles and adults where the two age classes for all individuals were firmly established. September records have been omitted owing to the difficulties of positive age diagnosis in that month. The proportions were not different between July and August, so data for the two months have been combined. For 555 groups containing juvenile Guillemots, 68% comprised just one juvenile and one adult, whereas, for 211 groups of Razorbills, the equiva• lent proportion was higher, at 84%, though the difference between the species was not significant. Often, when more than one adult was grouped with a juvenile, it was obvious which of the adults was the real guardian, from the relative proximity of the two adults to the juvenile. In areas where there were large numbers of adults, the adult/juvenile pairs tended to swim slightly apart from the rafts of adults. Moult and head plumage Nestling Guillemots have completely dark heads in the down plumage; this is replaced by juvenile feathering which is dark over the crown and nape but white on the chin and throat. They depart from the colonies in this juvenile plumage. In the Irish Sea, during the summer of 1983, it became obvious that the juvenile plumage was variable, and we classified the head plumage into three categories (fig, 1). By September, all the identified immatures were in first-winter plumage, and were very similar to the winter adults, and presumably, in many cases, indistinguishable from them. Fig. 1. Categories of head plumage shown by juvenile and first-winter Guillemots Uriaaalge: left, dark; centre, intermediate; right, white During the period from mid July to mid September, adult Guillemots are progressing through their complete moult to winter plumage (Birkhead & Taylor 1977). Swennen (1977) showed, with captive birds, that this moult becomes progressively later in the summer with the increasing age of the birds, loss of primaries and secondaries starting in mid June for first- summers and in late July for third-summers. In the Irish Sea, first signs of wing moult were noted on 21st July on birds not with juveniles, but those accompanying juveniles rarely seemed to flap their wings, and we have no dates for commencement of wing moult in this group. Individuals with Immature Guillemots and Razorbills at sea 373 traces of winter-like plumage in the head feathering can be seen at any time of the summer; most of these may be sexually immature (first- to fourth- summers), though one case is known of such a bird incubating an egg (PHJ personal observation). The following categories of head plumage were used: (1) full summer plumage, without any trace of white visible on a dark head; (2) full winter plumage; and two intermediate categories: (3) s/w, closer to summer than winter, and (4) w/s for the converse. Razorbills do not seem to have been so well studied, but, for convenience, we classified them according to the same criteria. Table 2. Group size of Irish Sea Razorbills Aha tarda, where the two age-classes for all individuals were firmly established, July and August 1983 No groups over 8 included juveniles, but see caveat under table 1 No. of accom• panying Number of juveniles adults 1 2 3 1 177(88%) 0 0 2 14 ( 7%) 8 0 3 3( 1%) 0 2 4 5 ( 2%) 0 0 5 0 0 0 6 1 0 0 7 0 0 0 8 1 0 0 >8 0 0 0 Total no. of records 201 8 2 Head-plumage patterns for juveniles/first-winters of these species are shown, according to date, in table 3. Although suggesting that the dark phase develops by post-juvenile moult through intermediate to white in Guillemots, there remains the possibility that juveniles do not show sequential changes, but remain in one category until they moult through to first-winter plumage.
Recommended publications
  • Breeding Ecology and Extinction of the Great Auk (Pinguinus Impennis): Anecdotal Evidence and Conjectures
    THE AUK A QUARTERLY JOURNAL OF ORNITHOLOGY VOL. 101 JANUARY1984 No. 1 BREEDING ECOLOGY AND EXTINCTION OF THE GREAT AUK (PINGUINUS IMPENNIS): ANECDOTAL EVIDENCE AND CONJECTURES SVEN-AXEL BENGTSON Museumof Zoology,University of Lund,Helgonavi•en 3, S-223 62 Lund,Sweden The Garefowl, or Great Auk (Pinguinusimpen- Thus, the sad history of this grand, flightless nis)(Frontispiece), met its final fate in 1844 (or auk has received considerable attention and has shortly thereafter), before anyone versed in often been told. Still, the final episodeof the natural history had endeavoured to study the epilogue deservesto be repeated.Probably al- living bird in the field. In fact, no naturalist ready before the beginning of the 19th centu- ever reported having met with a Great Auk in ry, the GreatAuk wasgone on the westernside its natural environment, although specimens of the Atlantic, and in Europe it was on the were occasionallykept in captivity for short verge of extinction. The last few pairs were periods of time. For instance, the Danish nat- known to breed on some isolated skerries and uralist Ole Worm (Worm 1655) obtained a live rocks off the southwesternpeninsula of Ice- bird from the Faroe Islands and observed it for land. One day between 2 and 5 June 1844, a several months, and Fleming (1824) had the party of Icelanderslanded on Eldey, a stackof opportunity to study a Great Auk that had been volcanic tuff with precipitouscliffs and a flat caught on the island of St. Kilda, Outer Heb- top, now harbouring one of the largestsgan- rides, in 1821. nettles in the world.
    [Show full text]
  • Pigeon Guillemot Study DELIVERABLES for TASK NO
    County: Island Grant No: PROJECT TITLE: Pigeon Guillemot Study DELIVERABLES FOR TASK NO: PROGRESS REPORT: [ ] PROJECT FINAL REPORT: [ X ] PERIOD COVERED: June-Aug 2013 DATE SUBMITTED: This project has been funded wholly or in part by the United States Environmental Protection Agency. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Pigeon Guillemot Study Whidbey Island, Washington 2013 Breeding Season Kelly L. Zupich Guillemot Research Group Abstract On Whidbey Island, Washington, three Pigeon Guillemot colonies were studied from June 25th, 2013 to August 31st, 2013 during breeding/nesting season. This is the fifth year of study. Pigeon Guillemots are the only seabird that regularly nest on Whidbey Island and remain in the Salish Sea year-round. The diet and behavior of these seabirds makes them an ideal indicator of the condition of the Salish Sea. The objective of this study is to establish baseline data on the population of Pigeon Guillemots on Whidbey Island. The colonies were monitored and data recorded on prey fed to chicks, fledging success, and population. The three colonies involved are Shore Meadows, Mutiny Sands, and Rolling Hills. The average prey choice for all three colonies was 63% gunnel, 29% sculpin, and 8% other. Fledging success in 2013 averaged 55%. Average population was forty five PIGUs at Shore Meadows, fourteen at Mutiny Sands, and nineteen at Rolling Hills. PIGU-Pigeon Guillemot Introduction Pigeon Guillemots (Cepphus columba) are medium sized seabirds of the Alcidae family.
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]
  • Comparative Reproductive Ecology of the Auks (Family Alcidae) with Emphasis on the Marbled Murrelet
    Chapter 3 Comparative Reproductive Ecology of the Auks (Family Alcidae) with Emphasis on the Marbled Murrelet Toni L. De Santo1, 2 S. Kim Nelson1 Abstract: Marbled Murrelets (Brachyramphus marmoratus) are breed on the Farallon Islands in the Pacific Ocean (Common comparable to most alcids with respect to many features of their Murre, Pigeon Guillemot, Cassin’s Auklet, Rhinoceros Auklet, reproductive ecology. Most of the 22 species of alcids are colonial and Tufted Puffin) are presented by Ainley (1990), Ainley in their nesting habits, most exhibit breeding site, nest site, and and others (1990a, b, c) and Boekelheide and others (1990). mate fidelity, over half lay one egg clutches, and all share duties Four inshore fish feeding alcids of the northern Pacific Ocean of incubation and chick rearing with their mates. Most alcids nest on rocky substrates, in earthen burrows, or in holes in sand, (Kittlitz’s Murrelet, Pigeon Guillemot, Spectacled Guillemot, around logs, or roots. Marbled Murrelets are unique in choice of and Marbled Murrelet) are reviewed by Ewins and others nesting habitat. In the northern part of their range, they nest on (1993) (also see Marshall 1988a for a review of the Marbled rocky substrate; elsewhere, they nest in the upper canopy of coastal Murrelet). The Ancient Murrelet, another inhabitant of the coniferous forest trees, sometimes in what appear to be loose northern Pacific Ocean, has been reviewed by Gaston (1992). aggregations. Marbled Murrelet young are semi-precocial as are Alcids that nest in small, loosely-aggregated colonies, as most alcids, yet they hatch from relatively large eggs (relative to isolated pairs, or in areas less accessible to researchers, have adult body size) which are nearly as large as those of the precocial not been well studied.
    [Show full text]
  • Egg Shape in the Common Guillemot Uria Aalge and Brunnich's Guillemot U. Lomvia: Not a Rolling Matter?
    J Ornithol DOI 10.1007/s10336-017-1437-8 ORIGINAL ARTICLE Egg shape in the Common Guillemot Uria aalge and Brunnich’s Guillemot U. lomvia: not a rolling matter? 1 1 2 Tim R. Birkhead • Jamie E. Thompson • John D. Biggins Received: 21 September 2016 / Revised: 9 November 2016 / Accepted: 21 December 2016 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The adaptive significance of avian egg shape is Bru¨nnich’s Guillemots produce eggs that are as large or poorly understood, and has been studied only in those larger than those of some Common Guillemot populations, species producing pyriform (pear-shaped, or pointed) eggs: the shape–mass hypothesis predicts that that (1) larger (i.e. waders and guillemots (murres) Uria spp., albeit to a heavier) eggs of both guillemot species will be more limited extent. In the latter, it is widely believed that the pyriform (pointed) in shape, and (2) that eggs of the two pyriform shape has evolved to minimise their likelihood of species of same mass should be similarly pointed. We rolling off a cliff ledge: the idea being that the more tested these predictions and found: (1) only a weak, posi- pointed the egg, the narrower the arc in which it rolls, and tive association between egg volume and pointedness in the less likely it is it will fall from a cliff ledge. Previous both guillemot species (\3% of the variation in egg shape research also claimed that the rolling trajectory—the explained by egg volume), and (2) no evidence that eggs of diameter of the arc they describe—of Common Guillemot the two species of similar mass were more similar in shape: U.
    [Show full text]
  • Significance of the Pattern of Nest Distribution in the Pigeon Guillemot (Cepphus Col Umba )
    SIGNIFICANCE OF THE PATTERN OF NEST DISTRIBUTION IN THE PIGEON GUILLEMOT (CEPPHUS COL UMBA ) S. K. EMMS • AND N. A.M. VERBEEK Departmentof BiologicalSciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6,Canada ABSTRACT.--Westudied nest distribution in the Pigeon Guillemot (Cepphuscolumba), and three possibleselective factors that influence it: nest predation, the use of nest groupsas information centers for food finding, and spatial variation in nest-hole quality. Quadrat surveysin 2 yr suggestedthat nestswere dispersedrandomly with respectto the distribution of suitableholes, but on a larger spatialscale, holes on the south shorewere preferred to those on the north. Predation intensity was largely independent of nest density. This was true whether egg predationalone, chickpredation alone, or total predationwas considered. Nestingclose to other birds, however,had a slight advantageon a very local scale.Reduced predationon south-shorenests seemed to be due to their beingbetter protected from predators ratherthan to specificadvantages to aggregation.Neither chickfeeding rates nor chickgrowth ratesincreased with nestgroup size, indicatingthat nestgroups did not serveas information centersfor food finding. We concludethat the observedclumping of nestswas due to a clumpeddistribution of suitablesites and spatialvariation in nest-holequality. Received18 February1988, accepted3 October1988. COLONI^Lnesting is a highly conspicuous knowledgeableroost mates, and recentlyBrown pattern of breedingin birds, and many studies (1986),
    [Show full text]
  • Nesting Density, Habitat Structure and Human Disturbance As Factors in Black Guillemot Reproduction
    Wilson Bull., 92(3), 1980, pp. 352-361 NESTING DENSITY, HABITAT STRUCTURE AND HUMAN DISTURBANCE AS FACTORS IN BLACK GUILLEMOT REPRODUCTION DAVID CAIRNS Seabirds probably choose inaccessible islands and cliffs for breeding sites to counteract predation, but colony size and distribution are related more closely to food habits (Lack 1967). Thus, species of seabirds which feed inshore tend to form small colonies, while species which feed offshore often form large concentrated colonies, less often along the coast. The Black Guillemot (Cepphus grylle) differs from most alcids in feeding in- shore, and its colonies are generally small and dispersed. But unlike other inshore feeders, guillemots nest in crevices which protect their clutches from avian predation at least. Breeding dispersion in other inshore feeders is affected by predation, so this protection may permit guillemots to re- spond to other selective pressures affecting nest spacing. Breeding success of the Black Guillemot has been related to habitat quality and nesting density (Divoky et al. 1974, Preston 1968). In the latter case, low breeding success and a high rate of intraspecific aggression in 1 high density nesting area suggested that the Black Guillemot is not well adapted for colonial nesting. The purpose of this study was to investigate the relations among habitat structure, nesting density, breeding success and behavior in the Black Guillemot. I also evaluated the possible influence of observer interference on breeding success, such as has been documented for Common Murres (Uris aalge) (Johnson 1938), Double-crested Cormorants (Phalucrocorux au&us) (Ellison and Cleary 1978) and gulls (Lams spp.) (Hunt 1972, Rob- ert and Ralph 1975, Gillett et al.
    [Show full text]
  • 1 New Insights from Old Eggs – the Shape and Thickness of Great Auk
    Title New insights from old eggs – the shape and thickness of Great Auk Pinguinus impennis eggs Authors Birkhead, T; Russell, D; Garbout, A; Attard, M; Thompson, J; Jackson, D Date Submitted 2020-04-06 NEW INSIGHTS FROM OLD EGGS – THE SHAPE AND THICKNESS OF GREAT AUK Pinguinus impennis EGGS Tim Birkhead 1*, Douglas Russell 2, Amin Garbout3, Marie Attard4, Jamie Thompson1 & Duncan Jackson1 1Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK; 2Natural History Museum, Bird Group, Department of Life Sciences, Akeman Street, Tring, HP23 6AP, UK; 3BMNH, South Kensington London SW7 5BD, 4Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK Abstract: We compared the shape and eggshell thickness of Great Auk’s eggs with those of its closest relatives, the Razorbill, Common Guillemot and Brünnich’s Guillemot in order to gain additional insights into the breeding biology of the extinct Great Auk. The egg of the Great Auk was most similar in shape to that of Brünnich’s Guillemot. The absolute thickness of the Great Auk’s eggshell was greater than that of the Common Guillemot and Razorbill egg, which is as expected given its greater size, but relative shell thickness at the equator and pointed end (compared to the blunt end) was more similar to that of the Common Guillemot. On the basis of these and other results we suggest that Great Auk incubated in an upright posture in open habitat with little or no nest, where its pyriform egg shape provided stability and allowed safe maneuverability duration incubation.
    [Show full text]
  • Seabird Enclosure De
    Downloaded from http://www.AustralasianZooKeeping.org with author’s permission Some enclosure design and management criteria for selected seabirds Catherine E. King Rotterdam Zoo, Van Aerssenlaan 49, 3039 KE Rotterdam, The Netherlands A seabird enclosure depicting Bass Rock in Scotland will be built in the next few years at Rotterdam Zoo as part of an extensive aquarium complex. Although a wealth of information exists about seabirds in the wild, few articles have been written about enclosures for seabirds being considered for this exhibit. It quickly became clear that not enough information was available from the literature to make educated decisions regarding enclosure occupancy and many aspects of design. Zoos that had either reported hatchings of Alcidae, Shags Phalacorax aristotelis or Northern gannets Morus bassinus to International Zoo Yearbook between 1985-1991 or had reported such hatchings in the last 12 months as of June 1994 to the International Species Information System (ISIS, 1994) were sent a seabird enclosure survey asking questions pertinent to the enclosure design concerns. No zoos had reported hatchings of Kittiwakes Rissa tridactyla, a seabird of interest here, to either of these sources. Two institutions otherwise known to have extensive seabird experience were also sent surveys. Additionally C. Swennen, a biologist that had undertaken a three year research project on captive seabirds at the Netherlands Institute for Sea Research (N.I.O.Z.), as well as having extensively studied seabirds in situ was interviewed and a questionnaire filled out. Thus, a total of eighteen institutions were surveyed; fifteen responses were received. Some data were gathered from articles produced by the three institutions that did not respond to the questionnaire (Douma & Carlson, 1993; Monroe et al., 1993; Neistadt & Alia, 1994; Sebek & Wiegand, 1992) and by one additional institution that had hatched seabirds in the past but did not receive a survey (Marsault, 1975).
    [Show full text]
  • RIS) – 2009-2012 Version
    Designation date: 31/05/12 Ramsar Site no. 2051 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. For office use only. DD MM Y Y Designation date Site Reference Number 1. Name and address of the compiler of this form: Leivur Janus Hansen Museum of Natural History FO-100 Tórshavn +298 340751 [email protected] Gísli Már Gíslason University of Iceland +354 5254617 [email protected] 2. Date this sheet was completed/updated: May 2012 3. Country: Faroe Islands, Denmark 4.
    [Show full text]
  • A Phylogenetic Analysis of Extinct and Extant Pan-Alcidae (Charadriiformes: Aves)" (2018)
    Montclair State University Montclair State University Digital Commons Theses, Dissertations and Culminating Projects 5-2018 A Phylogenetic Analysis of Extinct and Extant Pan- Alcidae (Charadriiformes: Aves) Alexandria A. DiGiacomo Montclair State University Follow this and additional works at: https://digitalcommons.montclair.edu/etd Part of the Biology Commons Recommended Citation DiGiacomo, Alexandria A., "A Phylogenetic Analysis of Extinct and Extant Pan-Alcidae (Charadriiformes: Aves)" (2018). Theses, Dissertations and Culminating Projects. 128. https://digitalcommons.montclair.edu/etd/128 This Thesis is brought to you for free and open access by Montclair State University Digital Commons. It has been accepted for inclusion in Theses, Dissertations and Culminating Projects by an authorized administrator of Montclair State University Digital Commons. For more information, please contact [email protected]. Abstract Pan-Alcidae is a clade of birds consisting of the crown-clade Alcidae and the extinct Mancallinae. They include 24 extant species, 1 recently extinct species, and a fossil record extending as far back as the Eocene. All extinct and extant Pan-alcid diversity exhibit an exclusively Holarctic distribution with the majority of extant diversity found in the Pacific. The relationships of the Pan-Alcidae have been a long-standing subject of debate. Early systematic hypotheses placed Pan-Alcidae as close relatives of various water birds, however modern phylogenetic hypotheses have supported their placement within Charadriiformes. Their exact placement within Charadriiformes has yielded multiple hypotheses with further difficulty found in resolving the relationships within the clade itself. Until recently, most work on Pan-Alcidae systematics focused primarily on extant diversity, neglecting to include data from their robust fossil record.
    [Show full text]
  • The Point of a Guillemot's Egg
    This is a repository copy of The point of a Guillemot's egg. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/113128/ Version: Accepted Version Article: Birkhead, T.R., Thompson, J.E., Jackson, D. et al. (1 more author) (2017) The point of a Guillemot's egg. Ibis, 159 (2). pp. 255-265. ISSN 0019-1019 https://doi.org/10.1111/ibi.12458 This is the peer reviewed version of the following article: Birkhead, T. R., Thompson, J. E., Jackson, D. and Biggins, J. D. (2017), The point of a Guillemot's egg. Ibis, 159: 255–265, which has been published in final form at https://doi.org/10.1111/ibi.12458. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]