View This Volume's Front and Back Matter

Total Page:16

File Type:pdf, Size:1020Kb

View This Volume's Front and Back Matter http://dx.doi.org/10.1090/gsm/084 Cone s an d Dualit y This page intentionally left blank Cone s an d Dualit y Charalambo s D . Alipranti s RabeeTourk y Graduate Studies in Mathematics Volum e 84 •& Ip^Sn l America n Mathematica l Societ y *0||jjO ? provjcjence i Rhod e Islan d Editorial Board David Cox (Chair) Walter Craig N. V. Ivanov Steven G. Krantz 2000 Mathematics Subject Classification. Primary 46A40, 46B40, 47B60, 47B65; Secondary 06F30, 28A33, 91B28, 91B99. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-84 Library of Congress Cataloging-in-Publication Data Aliprantis, Charalambos D. Cones and duality / Charalambos D. Aliprantis, Rabee Tourky. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 84) Includes bibliographical references and index. ISBN 978-0-8218-4146-4 (alk. paper) 1. Cones (Operator theory). 2. Linear topological spaces, Ordered. I. Tourky, Rabee, 1966- II. Title. QA329 .A45 2007 515'.724—dc22 2007060758 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. © 2007 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. @ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http: //www. ams. org/ 10 9 8 7 6 5 4 3 2 1 12 11 10 09 08 07 To the great Russian mathematician and economist Leonid Vitaliyevich Kantorovich (1912-1986), the 1975 Nobel Prize co-recipient in economics, ... whose brilliant ideas have shaped the field of ordered vector spaces and are present throughout this book. This page intentionally left blank Contents Preface The "isomorphism" notion Chapter 1. Cones §1.1. Wedges and cones §1.2. Archimedean cones §1.3. Lattice cones §1.4. Positive and order bounded operators §1.5. Positive linear functionals §1.6. Faces and extremal vectors of cones §1.7. Cone bases §1.8. Decomposability in ordered vector spaces §1.9. The Riesz-Kantorovich formulas Chapter 2. Cones in topological vector spaces §2.1. Ordered topological vector spaces §2.2. Wedge duality §2.3. Normal cones §2.4. Positivity and continuity §2.5. Ordered Banach spaces §2.6. Ice cream cones in normed spaces §2.7. Ideals in ordered vector spaces §2.8. The order topology generated by a cone Vlll Contents Chapter 3. Yudin and pull-back cones 117 §3.1. Closed cones in finite dimensional vector spaces 118 §3.2. Directional wedges and Yudin cones 122 §3.3. Polyhedral wedges and cones 131 §3.4. The geometrical structure of polyhedral cones 137 §3.5. Linear inequalities and alternatives 148 §3.6. Pull-back cones of operators 152 Chapter 4. Krein operators 159 §4.1. The concept of a Krein operator 160 §4.2. Eigenvalues of Krein operators 163 §4.3. Fixed points and eigenvectors 167 Chapter 5. K-lattices 173 §5.1. The notion and properties of K-lattices 174 §5.2. The Riesz–Kantorovich transform 183 §5.3. The order extension of £b(L, N) 190 Chapter 6. The order extension of V 197 §6.1. The extension of V 199 §6.2. Generalized Riesz-Kantorovich functionals 204 §6.3. When is the Riesz-Kantorovich functional additive? 210 Chapter 7. Piecewise affine functions 221 §7.1. One-dimensional piecewise affine functions 221 §7.2. Multivariate piecewise affine functions 227 Chapter 8. Appendix: linear topologies 243 §8.1. Linear topologies on vector spaces 244 §8.2. Duality theory 247 §8.3. 6-topologies 249 §8.4. The separation of convex sets 251 §8.5. Normed and Banach spaces 252 §8.6. Finite dimensional topological vector spaces 256 §8.7. The open mapping and the closed graph theorems 257 §8.8. The bounded weak* topology 259 Bibliography 265 Index 271 Preface Ordered vector spaces made their debut at the beginning of the twentieth century. They were developed in parallel (but from a different perspec• tive) with functional analysis and operator theory. Before the 1950s ordered vector spaces appeared in the literature in a fragmented way. Their sys• tematic study began in various schools around the world after the 1950s. We mention the Russian school (headed by L. V. Kantorovich and the Krein brothers), the Japanese school (headed by H. Nakano), the Ger• man school (headed by H. H. Schaefer), and the Dutch school (headed by A. C. Zaanen). At the same time several monographs dealing exclu• sively with ordered vector spaces appeared in the literature; see for in• stance [55, 56, 71, 75, 89, 91]. The special class of ordered vector spaces known as Riesz spaces or vector lattices has been studied more extensively; see the monographs [14, 15, 66, 68, 86, 88, 93]. The theory of ordered vector spaces plays a prominent role in functional analysis. It also contributes to a wide variety of applications and is an indispensable tool for studying a variety of problems in engineering and economics; see for instance [29, 31, 35, 36, 38, 42, 47, 49, 54, 64, 65, 76]. The introduction of Riesz spaces and more broadly ordered vector spaces to economic theory has proved tremendously successful and has allowed researchers to answer difficult questions in general price equilibrium theory, economies with differential information, the theory of perfect competition, and incomplete assets economies. The goal of this monograph is to present the theory of ordered vector spaces from a contemporary perspective that has been influenced by the study of ordered vector spaces in economics as well as other recent appli• cations. We try to imbue the narrative with geometric intuition, which is IX X Preface in keeping with a long tradition in mathematical economics. We also ap• proach the subject with our own personal presentiment that the special class of Riesz spaces is somehow "perfect" and thus loosely conceive of general ordered vector spaces as "deviations" from this "perfection." The book also contains material that has not been published in a monograph form before. The study of this material was initially motivated by various problems in economics and econometrics. The material is spread out in eight chapters. Chapter 8 is an Appendix and contains some basic notions of functional analysis. Special attention is paid to the properties of linear topologies and the separation of convex sets. The results in this chapter (some of which are presented with proofs) are used throughout the monograph without specific mention. Chapter 1 presents the fundamental properties of wedges and cones. Here we discuss Archimedean cones, lattice cones, extremal vectors of cones, bases of cones, positive linear functionals and the important decomposabil- ity property of cones known as the Riesz decomposition property. Chapter 2 introduces cones in topological vector spaces. This chapter illustrates the variety of remarkable results that can be obtained when some link between the order and the topology is imposed. The most important interrelationship between a cone and a linear topology is known as normality. We discuss nor• mal cones in detail and obtain several characterizations. In normed spaces, the normality of the cone amounts to the norm boundedness of the order intervals generated by the cone. In Chapter 2 we also introduce ideals and present some of their useful order and topological properties. Chapter 3 studies in detail cones in finite dimensional vector spaces. The results here are much sharper. For instance, as we shall see, every closed cone of a finite dimensional vector space is normal. The reader will find in this chapter a study (together with a geometrical description) of the polyhedral cones as well as a discussion of the properties of linear inequalities—including a proof of "the Principle of Linear Programming." The chapter culminates with a study of pull-back cones and establishes the following "universality" property of C[0,1]: every closed cone of a finite dimensional vector space is the pull-back cone of the cone of C[0,1] via a one-to-one operator from the space to C[0,1]. Chapter 4 investigates the fixed points and eigenvalues of an important class of positive operators known as Krein operators. A Krein space is an ordered Banach space having order units and a closed cone. A positive oper• ator T on a Krein space is a Krein operator if for any x > 0 the vector Tnx is an order unit for some n. Many integral operators are Krein operators. These operators possess some useful fixed points that are investigated in this chapter. Preface XI Chapters 5, 6, and 7 contain new material that, as far as we know, has not appeared before in any monograph. Chapter 5 develops in detail the theory of /C-lattices. An ordered vector space L is called a fC-lattice, where K is a super cone of L, i.e., K I) L+, if for every nonempty subset A of L the collection of all L+-upper bounds of A is nonempty and has a /C- infimum.
Recommended publications
  • Lifting Convex Approximation Properties and Cyclic Operators with Vector Lattices رﻓﻊ ﺧﺼﺎﺋﺺ اﻟﺘﻘﺮﯾﺐ اﻟﻤﺤﺪب واﻟﻤﺆﺛﺮات اﻟﺪورﯾﺔ ﻣﻊ ﺷﺒﻜﺎت اﻟﻤﺘﺠﮫ
    University of Sudan for Science and Technology College of graduate Studies Lifting Convex Approximation Properties and Cyclic Operators with Vector Lattices رﻓﻊ ﺧﺼﺎﺋﺺ اﻟﺘﻘﺮﯾﺐ اﻟﻤﺤﺪب واﻟﻤﺆﺛﺮات اﻟﺪورﯾﺔ ﻣﻊ ﺷﺒﻜﺎت اﻟﻤﺘﺠﮫ A thesis Submitted in Partial Fulfillment of the Requirement of the Master Degree in Mathematics By: Marwa Alyas Ahmed Supervisor: Prof. Shawgy Hussein Abdalla November 2016 1 Dedication I dedicate my dissertation work to my family, a special feeling of gratitude to my loving parents, my sisters and brothers. I also dedicate this dissertation to my friends and colleagues. I ACKNOWLEDGEMENTS First of all I thank Allah.. I wish to thank my supervisor Prof. Shawgi huSSien who was more than generous with his expertise and precious time. A special thanks to him for his countless hours of reflecting, reading, encouraging, and most of all patience throughout the entire process. I would like to acknowledge and thank Sudan University for Sciences & Technology for allowing me to conduct my research and providing any assistance requested. Special thanks goes to the all members of the university for their continued support. II Abstract We demonstrate that rather weak forms of the extendable local reflexivity and of the principle of local reflexivity are needed for the lifting of bounded convex approximation properties from Banach spaces to their dual spaces. We show that certain adjoint multiplication operators are convex- cyclic and show that some are convex- cyclic but no convex polynomial of the operator is hypercyclic. Also some adjoint multi- plication operators are convex- cyclic but not 1-weakly hypercyclic. We deal with two weaker forms of injectivity which turn out to have a rich structure behind: separable injectivity and universal separable injectivity.
    [Show full text]
  • Riesz Vector Spaces and Riesz Algebras Séminaire Dubreil
    Séminaire Dubreil. Algèbre et théorie des nombres LÁSSLÓ FUCHS Riesz vector spaces and Riesz algebras Séminaire Dubreil. Algèbre et théorie des nombres, tome 19, no 2 (1965-1966), exp. no 23- 24, p. 1-9 <http://www.numdam.org/item?id=SD_1965-1966__19_2_A9_0> © Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1965-1966, tous droits réservés. L’accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » im- plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Seminaire DUBREIL-PISOT 23-01 (Algèbre et Theorie des Nombres) 19e annee, 1965/66, nO 23-24 20 et 23 mai 1966 RIESZ VECTOR SPACES AND RIESZ ALGEBRAS by Lássló FUCHS 1. Introduction. In 1940, F. RIESZ investigated the bounded linear functionals on real function spaces S, and showed that they form a vector lattice whenever S is assumed to possess the following interpolation property. (A) Riesz interpolation property. -If f , g~ are functions in S such that g j for i = 1 , 2 and j = 1 , 2 , then there is some h E S such that Clearly, if S is a lattice then it has the Riesz interpolation property (choose e. g. h = f 1 v f~ A g 2 ~, but there exist a number of important function spaces which are not lattice-ordered and have the Riesz interpolation property.
    [Show full text]
  • Preregular Maps Between Banach Lattices
    BULL. AUSTRAL. MATH. SOC. 46A40, 46M05 VOL. II (1974), 231-254. (46BI0, 46BI5) Preregular maps between Banach lattices David A. Birnbaum A continuous linear map from a Banach lattice E into a Banach lattice F is preregular if it is the difference of positive continuous linear maps from E into the bidual F" of F . This paper characterizes Banach lattices B with either of the following properties: (1) for any Banach lattice E , each map in L(E, B) is preregular; (2) for any Banach lattice F , each map in L{B, F) is preregular. It is shown that B satisfies (l) (respectively (2)) if and- only if B' satisfies (2) (respectively (l)). Several order properties of a Banach lattice satisfying (2) are discussed and it is shown that if B satisfies (2) and if B is also an atomic vector lattice then B is isomorphic as a Banach lattice to I (T) for some index set Y . 1. Introduction The following natural question arises in the theory of Banach lattices: Given Banach lattices E and F , is each map in the space L(E, F) of continuous linear maps from E into F the difference of positive (continuous) linear maps? It is known that if F is a C{X) for X an extremally disconnected, compact Hausdorff space X or if E is an A£-space and F has the monotone convergence property then the answer to Received 17 May 1971*. 231 Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.226, on 02 Oct 2021 at 11:23:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
    [Show full text]
  • Inapril 3, 1970
    AN ABSTRACT OF THE THESIS OF Ralph Leland James for theDoctor of Philosophy (Name) (Degree) inAprilMathematics 3,presented 1970on (Major) (Date) Title: CONVERGENCE OF POSITIVE OPERATORS Abstract approved: Redacted for Privacy P. M. Anselone The extension and convergence of positiveoperators is investi- gated by means of a monotone approximation technique.Some gener- alizations and extensions of Korovkin's monotoneoperator theorem on C[0, 1] are given. The concept of a regular set is introduced and it is shownthat pointwise convergence is uniform on regular sets.Regular sets are investigated in various spaces andsome characterizations are obtained. These concepts are applied to the approximate solutionof a large class of integral equations. Convergence of Positive Operators by Ralph Leland James A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 1970 APPROVED: Redacted for Privacy P nf eS ::33r of _Department of Ma,thernat ic s in charge of major Redacted for Privacy ActingChairman o Department of Mathematics Redacted for Privacy Dean of Graduate School Date thesis is presented April 3, 1970 Typed by Barbara Eby for Ralph Leland James ACKNOWLEDGEMENT I wish to express my appreciation to Professor P. M.Anselone for his guidance and encouragement during the preparation ofthis thesis. CONVERGENCE OF POSITIVE OPERATORS I.INTRODUCTION §1.Historical Remarks The ordinary Riemann integral can be regarded as an extension of the integral of a continuous function to a larger space in the follow- ing way.Let (1,03,C denote respectively the linear spaces of all, bounded, and continuous real valued functions on [0, 1] .For x in define 1 P0 x = x(t)dt is posi- thenP0is a linear functional defined on C.
    [Show full text]
  • Integration of Functions with Values in a Banach Lattice
    INTEGRATION OF FUNCTIONS WITH VALUES IN A BANACH LATTICE G. A. M.JEURNINK INTEGRATION OF FUNCTIONS WITH VALUES IN A BANACH LATTICE PROMOTOR: PROF. DR. А. С. M. VAN ROOIJ INTEGRATION OF FUNCTIONS WITH VALUES IN A BANACH LATTICE PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE KATHOLIEKE UNIVERSI­ TEIT TE NIJMEGEN, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF DR Ρ G А В WIJDEVELD, VOLGENS BESLUIT VAN HET COI LEGE VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP VRIJDAG 18 JUNI 1982, DES MIDDAGS TE 2 00 ULR PRECIES DOOR GERARDUS ALBERTUS MARIA JEURNINK GEBOREN TE DIEPENVEEN И krips repro meppel 1982 Aan mijn ошіелі Voor hun medewerking aan dit proefschrift ben ik Trees van der Eem-Mijnen en Ciaire Elings-Mesdag zeer dankbaar. CONTENTS INTRODUCTION AND SUMMARY CONVENTIONS AND NOTATIONS CHAPTER I PRELIMINARIES 1 §1 Measurability and integrability of functions with values in a Banach space 1 §2 Banach lattices 13 §3 Summability of sequences in Banach lattices 23 CHAPTER II INTEGRATION 35 51 Integration of functions with values in a Banach lattice 35 §2 Riesz spaces of integrable functions 47 §3 Banach lattice theory for spaces of integrable functions 58 §4 Examples 68 CHAPTER III SPECIAL CLASSES OF OPERATORS AND TENSOR PRODUCTS 75 51 Induced maps between spaces of integrable functions 75 §2 θ-operators 79 5 3 Δ-operators 85 5 4 Tensor products of Banach lattices 92 55 Tensor products of Banach spaces and Banach lattices 103 56 Examples of tensor products 108 CHAPTER IV VECTOR MEASURES 115 §1 Vector measures with values in a Banach lattice 115 §2 Weakly equivalent functions 124 §3 The Radon-Nikodym property 136 54 Weak measurable functions 147 CHAPTER V DANIELL INTEGRATION 153 §1 An extension of the Pettis integral 153 §2 The extension of the integral on S(μ.
    [Show full text]
  • An Algebraic Theory of Infinite Classical Lattices I
    An algebraic theory of infinite classical lattices I: General theory Don Ridgeway Department of Statistics, North Carolina State University, Raleigh, NC 27695 [email protected] Abstract We present an algebraic theory of the states of the infinite classical lattices. The construction follows the Haag-Kastler axioms from quantum field theory. By com- parison, the *-algebras of the quantum theory are replaced here with the Banach lattices (MI-spaces) to have real-valued measurements, and the Gelfand-Naimark- Segal construction with the structure theorem for MI-spaces to represent the Segal algebra as C(X). The theory represents any compact convex set of states as a decom- arXiv:math-ph/0501041v3 8 Oct 2005 position problem of states on an abstract Segal algebra C(X), where X is isomorphic with the space of extremal states of the set. Three examples are treated, the study of groups of symmetries and symmetry breakdown, the Gibbs states, and the set of all stationary states on the lattice. For relating the theory to standard problems of statistical mechanics, it is shown that every thermodynamic-limit state is uniquely identified by expectation values with an algebraic state. MSC 46A13 (primary) 46M40 (secondary) 1 2 THEORY OF MEASUREMENT I Introduction It is now generally recognized in statistical mechanics that in order to well- define even such basic thermodynamic concepts as temperature and phase transition, one must deal with systems of infinite extent [12]. Two approaches to the study of infinite systems have emerged since the 1950s, Segal’s algebraic approach in quantum field theory (QFT) ([3], [8], [13], [27]) and the theory of thermodynamic-limit (TL) states ([5],[17],[16]).
    [Show full text]
  • Nonstandard Analysis and Vector Lattices Managing Editor
    Nonstandard Analysis and Vector Lattices Managing Editor: M. HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume 525 Nonstandard Analysis and Vector Lattices Edited by S.S. Kutateladze Sobolev Institute of Mathematics. Siberian Division of the Russian Academy of Sciences. Novosibirsk. Russia SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. A C.LP. Catalogue record for this book is available from the Library of Congress. ISBN 978-94-010-5863-6 ISBN 978-94-011-4305-9 (eBook) DOI 10.1007/978-94-011-4305-9 This is an updated translation of the original Russian work. Nonstandard Analysis and Vector Lattices, A.E. Gutman, \'E.Yu. Emelyanov, A.G. Kusraev and S.S. Kutateladze. Novosibirsk, Sobolev Institute Press, 1999. The book was typeset using AMS-TeX. Printed an acid-free paper AII Rights Reserved ©2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Contents Foreword ix Chapter 1. Nonstandard Methods and Kantorovich Spaces (A. G. Kusraev and S. S. Kutateladze) 1 § 1.l. Zermelo-Fraenkel Set·Theory 5 § l.2. Boolean Valued Set Theory 7 § l.3. Internal and External Set Theories 12 § 1.4. Relative Internal Set Theory 18 § l.5. Kantorovich Spaces 23 § l.6. Reals Inside Boolean Valued Models 26 § l.7. Functional Calculus in Kantorovich Spaces 30 § l.8.
    [Show full text]
  • On $ C $-Compact Orthogonally Additive Operators
    ON C-COMPACT ORTHOGONALLY ADDITIVE OPERATORS MARAT PLIEV and MARTIN R. WEBER Abstract. We consider C-compact orthogonally additive operators in vector lattices. After providing some examples of C-compact orthogonally additive operators on a vector lattice with values in a Banach space we show that the set of those operators is a projection band in the Dedekind complete vector lattice of all regular orthogonally additive operators. In the second part of the article we introduce a new class of vector lattices, called C-complete, and show that any laterally-to-norm continuous C-compact orthogonally additive operator from a C-complete vector lattice to a Banach space is narrow, which generalizes a result of Pliev and Popov. 1. Introduction Orthogonally additive operators in vector lattices first were investigated in [12]. Later these results were extended in [1, 2, 6, 7, 8, 20, 22, 23]). Recently, some connections with problems of the convex geometry were revealed [24, 25]. Orthogonally additive operators in lattice-normed spaces were studied in [3]. In this paper we continue this line of research. We analyze the notion of C-compact orthogonally additive operator. In the first part of the article we show that set of all C-compact orthogonally additive operators from a vector lattice E to an order continuous Banach lattice F is a projection band in the vector lattice of all regular orthogonally additive operators from E to F (Theorem 3.9). In arXiv:1911.10255v2 [math.FA] 10 Dec 2019 the final part of the paper we introduce a new class of vector lattices which we call C-complete (the precise definition is given in section 4) and prove that any laterally-to-norm continuous C-compact orthogonally additive operator from an atomless C-complete vector lattice E to a Banach space X is narrow (Theorem 4.7).
    [Show full text]
  • From Hahn–Banach Type Theorems to the Markov Moment Problem, Sandwich Theorems and Further Applications
    mathematics Review From Hahn–Banach Type Theorems to the Markov Moment Problem, Sandwich Theorems and Further Applications Octav Olteanu Department of Mathematics-Informatics, University Politehnica of Bucharest, 060042 Bucharest, Romania; [email protected] or [email protected] Received: 23 July 2020; Accepted: 5 August 2020; Published: 10 August 2020 Abstract: The aim of this review paper is to recall known solutions for two Markov moment problems, which can be formulated as Hahn–Banach extension theorems, in order to emphasize their relationship with the following problems: (1) pointing out a previously published sandwich theorem of the type f h g, where f, g are convex functionals and h is an affine functional, over a finite-simplicial ≤ ≤ − set X, and proving a topological version for this result; (2) characterizing isotonicity of convex operators over arbitrary convex cones; giving a sharp direct proof for one of the generalizations of Hahn–Banach theorem applied to the isotonicity; (3) extending inequalities assumed to be valid on a small subset, to the entire positive cone of the domain space, via Krein–Milman or Carathéodory’s theorem. Thus, we point out some earlier, as well as new applications of the Hahn–Banach type theorems, emphasizing the topological versions of these applications. Keywords: Hahn–Banach type theorems; Markov moment problem; sandwich theorem; finite-simplicial set; isotone convex operator; necessary and sufficient conditions 1. Introduction We recall the classical formulation of the moment problem, under the terms of T. Stieltjes, given in 1894–1895 (see the basic book of N.I. Akhiezer [1] for details): find the repartition of the positive mass on the nonnegative semi-axis, if the moments of arbitrary orders k (k = 0, 1, 2, ::: ) are given.
    [Show full text]
  • UNBOUNDED P-CONVERGENCE in LATTICE-NORMED VECTOR LATTICES
    UNBOUNDED p-CONVERGENCE IN LATTICE-NORMED VECTOR LATTICES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MOHAMMAD A. A. MARABEH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS MAY 2017 Approval of the thesis: UNBOUNDED p-CONVERGENCE IN LATTICE-NORMED VECTOR LATTICES submitted by MOHAMMAD A. A. MARABEH in partial fulfillment of the require- ments for the degree of Doctor of Philosophy in Mathematics Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Mustafa Korkmaz Head of Department, Mathematics Prof. Dr. Eduard Emel’yanov Supervisor, Department of Mathematics, METU Examining Committee Members: Prof. Dr. Süleyman Önal Department of Mathematics, METU Prof. Dr. Eduard Emel’yanov Department of Mathematics, METU Prof. Dr. Bahri Turan Department of Mathematics, Gazi University Prof. Dr. Birol Altın Department of Mathematics, Gazi University Assist. Prof. Dr. Kostyantyn Zheltukhin Department of Mathematics, METU Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: MOHAMMAD A. A. MARABEH Signature : iv ABSTRACT UNBOUNDED p-CONVERGENCE IN LATTICE-NORMED VECTOR LATTICES Marabeh, Mohammad A. A. Ph.D., Department of Mathematics Supervisor : Prof. Dr. Eduard Emel’yanov May 2017, 69 pages The main aim of this thesis is to generalize unbounded order convergence, unbounded norm convergence and unbounded absolute weak convergence to lattice-normed vec- tor lattices (LNVLs).
    [Show full text]
  • The Multiplicative Norm Convergence in Normed Riesz Algebras
    Hacettepe Journal of Hacet. J. Math. Stat. Volume 50 (1) (2021), 24 – 32 Mathematics & Statistics DOI : 10.15672/hujms.638900 Research Article The multiplicative norm convergence in normed Riesz algebras Abdullah Aydın Department of Mathematics, Muş Alparslan University, Muş, Turkey Abstract A net (xα)α∈A in an f-algebra E is called multiplicative order convergent to x ∈ E if o |xα −x|· u −→ 0 for all u ∈ E+. This convergence was introduced and studied on f-algebras with the order convergence. In this paper, we study a variation of this convergence for normed Riesz algebras with respect to the norm convergence. A net (xα) α∈A in a normed Riesz algebra E is said to be multiplicative norm convergent to x ∈ E if |xα − x| · u → 0 for each u ∈ E+. We study this concept and investigate its relationship with the other convergences, and also we introduce the mn-topology on normed Riesz algebras. Mathematics Subject Classification (2020). 46A40, 46E30 Keywords. mn-convergence, normed Riesz algebra, mn-topology, Riesz spaces, Riesz algebra, mo-convergence 1. Introduction and preliminaries Let us recall some notations and terminologies used in this paper. An ordered vector space E is said to be vector lattice (or, Riesz space) if, for each pair of vectors x, y ∈ E, the supremum x∨y = sup{x, y} and the infimum x∧y = inf{x, y} both exist in E. For x ∈ E, x+ := x ∨ 0, x− := (−x) ∨ 0, and |x| := x ∨ (−x) are called the positive part, the negative part, and the absolute value of x, respectively.
    [Show full text]
  • Lattices of Lipschitz Functions
    Pacific Journal of Mathematics LATTICES OF LIPSCHITZ FUNCTIONS NIKOLAI ISAAC WEAVER Volume 164 No. 1 May 1994 PACIFIC JOURNAL OF MATHEMATICS Vol. 164, No. 1, 1994 LATTICES OF LIPSCHITZ FUNCTIONS NIK WEAVER Let M be a metric space. We observe that Lip(M) has a striking lattice structure: its closed unit ball is lattice-complete and completely distributive. This motivates further study into the lattice structure of Lip (A/) and its relation to M. We find that there is a nice duality between M and Lip(Λf) (as a lattice). We also give an abstract classification of all normed vector lattices which are isomorphic to Lip(M) for some M. The set Lip(Af) of bounded real-valued Lipschitz functions on a metric space M has been studied extensively (see [2] for some ref- erences) as either a Banach space or a Banach algebra. However, its natural lattice structure has been almost completely ignored, probably because it is not a Banach lattice: the "Riesz norm" law M < \y\ =» IMI < which connects lattice structure with norm, is not satisfied by either of the two norms customarily given to Lip(Af). (Here |x| = x V (—Λ:).) Nonetheless, the lattice structure of Lip(Aί) is intimately related to its most natural norm. Indeed, for any norm-bounded set of elements {xa} C Lip(Λf), the join V x<* exists and satisfies Since — \/ xa = /\{-xa) (whenever either side exists), this implies a similar statement for meets and is equivalent to saying that the closed unit ball of Lip(Af) is lattice-complete. What's more, the unit ball is completely distributive, which makes it very special from the lattice- theoretic point of view.
    [Show full text]