Supplementary Material Accompanying the Following Article: Cimon, S., Deslauriers, A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ventrosia Maritima (Milaschewitsch, 1916) and V. Ventrosa (Montagu
Folia Malacol. 22(1): 61–67 http://dx.doi.org/10.12657/folmal.022.006 VENTROSIA MARITIMA (MILASCHEWITSCH, 1916) AND V. VENTROSA (MONTAGU, 1803) IN GREECE: MOLECULAR DATA AS A SOURCE OF INFORMATION ABOUT SPECIES RANGES WITHIN THE HYDROBIINAE (CAENOGASTROPODA: TRUNCATELLOIDEA) MAGDALENA SZAROWSKA, ANDRZEJ FALNIOWSKI Department of Malacology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland (e-mail: [email protected]) ABSTRACT: Using molecular data (DNA sequences of mitochondrial COI and nuclear ribosomal 18SrRNA genes), we describe the occurrence of two species of Ventrosia Radoman, 1977: V. ventrosa (Montagu, 1803) and V. maritima (Milaschewitsch, 1916) in Greece. These species are found at two disjunct localities: V. ventrosa at the west coast of Peloponnese (Ionian Sea) and V. maritima on Milos Island in the Cyclades (Aegean Sea). Our findings expand the known ranges of both species: we provide the first molecularly confirmed record of V. ventrosa in Greece, and extend the range of the presumably Pontic V. maritima nearly 500 km SSW into the Aegean Sea. Our data confirm the species distinctness of V. maritima. KEY WORDS: Truncatelloidea, COI, 18S rRNA, shell, Ventrosia, species distinctness, species range INTRODUCTION Data on the Greek Hydrobiinae, inhabiting brack- flock of species that are not differentiated morpho- ish waters, are less than scarce. SCHÜTT (1980) did logically or ecologically. Thus, at a species level in not list any species belonging to this subfamily in the Hydrobiinae, molecular characters are inevita- his monograph on the Greek Hydrobiidae. Although bly necessary to distinguish a taxon (e.g. WILKE & MUUS (1963, 1967) demonstrated that the mor- DAVIS 2000, WILKE & FALNIOWSKI 2001, WILKE & phology of the penis and the head pigmentation PFENNIGER 2002). -
Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic
water Review Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic Valentina S. Artamonova 1, Ivan N. Bolotov 2,3,4, Maxim V. Vinarski 4 and Alexander A. Makhrov 1,4,* 1 A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 2 Laboratory of Molecular Ecology and Phylogenetics, Northern Arctic Federal University, 163002 Arkhangelsk, Russia; [email protected] 3 Federal Center for Integrated Arctic Research, Russian Academy of Sciences, 163000 Arkhangelsk, Russia 4 Laboratory of Macroecology & Biogeography of Invertebrates, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Analysis of zoogeographic, paleogeographic, and molecular data has shown that the ancestors of many fresh- and brackish-water cold-tolerant hydrobionts of the Mediterranean region and the Danube River basin likely originated in East Asia or Central Asia. The fish genera Gasterosteus, Hucho, Oxynoemacheilus, Salmo, and Schizothorax are examples of these groups among vertebrates, and the genera Magnibursatus (Trematoda), Margaritifera, Potomida, Microcondylaea, Leguminaia, Unio (Mollusca), and Phagocata (Planaria), among invertebrates. There is reason to believe that their ancestors spread to Europe through the Paratethys (or the proto-Paratethys basin that preceded it), where intense speciation took place and new genera of aquatic organisms arose. Some of the forms that originated in the Paratethys colonized the Mediterranean, and overwhelming data indicate that Citation: Artamonova, V.S.; Bolotov, representatives of the genera Salmo, Caspiomyzon, and Ecrobia migrated during the Miocene from I.N.; Vinarski, M.V.; Makhrov, A.A. -
Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004
Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004 Andrew N. Cohen, San Francisco Estuary Institute, Oakland, CA Dale R. Calder, Royal Ontario Museum, Toronto, Ontario James T. Carlton, Williams College/Mystic Seaport–Maritime Studies Program, Mystic, CT John W. Chapman, Oregon State University/Hatfield Marine Science Center, Newport, OR Leslie H. Harris, Natural History Museum of Los Angeles County, Los Angeles, CA Taiju Kitayama, Tokyo National Science Museum, Tokyo, Japan Charles C. Lambert, University of Washington/Friday Harbor Laboratory, Friday Harbor, WA Gretchen Lambert, University of Washington/Friday Harbor Laboratory, Friday Harbor, WA Christina Piotrowski, California Academy of Science, San Francisco, CA Michelle Shouse, U.S. Geological Survey, Menlo Park, CA Luis A. Solórzano, U.S. Food and Drug Administration, Alameda, CA Conducted for the California State Coastal Conservancy, Oakland, CA; San Francisco Bay- Delta Science Consortium and Association of Bay Area Governments, Oakland, CA; National Geographic Society, Washington, DC; and the Rose Foundation, Oakland, CA. Cite as: Cohen, A.N., D.R. Calder, J.T. Carlton, J.W. Chapman, L.H. Harris, T. Kitayama, C.C. Lambert, G. Lambert, C. Piotrowski, M. Shouse and L.A. Solórzano. 2005. Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004. Final Report for the California State Coastal Conservancy, Association of Bay Area Governments/San Francisco Bay-Delta Science Consortium, National Geographic Society and Rose Foundation. San Francisco Estuary Institute, Oakland, CA. Introduction Exotic species constitute one of the main environmental stressors in the San Francisco Estuary. To further assess the extent of this problem, we conducted a Rapid Assessment (RA) survey of exotic species at shoreline stations in San Francisco Bay in the spring of 2004. -
Research Note
THE NAUTILUS 130(3):132–133, 2016 Page 132 Research Note A tumbling snail (Gastropoda: The width of the shell, based on the camera’s scale dots, Vetigastropoda: Margaritidae) seems to have been close to 40 mm, with the extended foot as much as 100 mm. The characteristic covered In August 2015, the NOAA ship OKEANOS EXPLORER con- umbilicus can only partially be seen in the photograph, ducted deep-sea studies in the northwestern Hawaiian so the identification remains uncertain. Hickman (2012) Islands, which now are within the Papahanaumokuakea noted that species of Gaza from the Gulf of Mexico Marine National Monument. The ship deployed the might be associated with chemosynthetic communi- remotely operated vehicle DEEP DISCOVERER (D2 ROV), ties, but the mollusk in the photographs was living on whose live video feed was shared with researchers on manganese-encrusted basalt. shore via satellite transmission. Hickman (2003; 2007) reported “foot thrashing” as an On 5 August 2015, the D2 ROV was exploring angular escape response to predators and in the laboratory by basalt blocks and sediment patches on the steep inner “mechanical disturbance” in the trochoidean gastropods slope of Maro Crater, an unusual 6 km-wide crater east Umbonium vestiarium (Linnaeus, 1758), Isanda coronata of Maro Reef (25.16o N, 169.88o W, 2998–3027 m). The A. Adams, 1854, and other species of the family cameras recorded what appeared to be a fish attacking or Solariellidae. The observations provided here are the first being attacked by some other unidentified animal. When of such behavior in Gaza spp. and among the few reports the ROV cameras were zoomed in on the encounter, the on behavior of non-cephalopod deep-sea mollusks. -
The Malacostracan Fauna of Two Arctic Fjords (West Spitsbergen): the Diversity And
+ Models OCEANO-95; No. of Pages 24 Oceanologia (2017) xxx, xxx—xxx Available online at www.sciencedirect.com ScienceDirect j ournal homepage: www.journals.elsevier.com/oceanologia/ ORIGINAL RESEARCH ARTICLE The malacostracan fauna of two Arctic fjords (west Spitsbergen): the diversity and distribution patterns of its pelagic and benthic components Joanna Legeżyńska *, Maria Włodarska-Kowalczuk, Marta Gluchowska, Mateusz Ormańczyk, Monika Kędra, Jan Marcin Węsławski Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland Received 14 July 2016; accepted 6 January 2017 KEYWORDS Summary This study examines the performance of pelagic and benthic Malacostraca in two Malacostraca; glacial fjords of west Spitsbergen: Kongsfjorden, strongly influenced by warm Atlantic waters, Arctic; and Hornsund which, because of the strong impact of the cold Sørkapp Current, has more of Svalbard; an Arctic character. The material was collected during 12 summer expeditions organized from Diversity; 1997 to 2013. In all, 24 pelagic and 116 benthic taxa were recorded, most of them widely Distribution distributed Arctic-boreal species. The advection of different water masses from the shelf had a direct impact on the structure of the pelagic Malacostraca communities, resulting in the clear dominance of the sub-arctic hyperiid amphipod Themisto abyssorum in Kongsfjorden and the great abundance of Decapoda larvae in Hornsund. The taxonomic, functional and size compositions of the benthic malacostracan assemblages varied between the two fjords, and also between the glacier-proximate inner bays and the main fjord basins, as a result of the varying dominance patterns of the same assemblage of species. There was a significant drop in species richness in the strongly disturbed glacial bays of both fjords, but only in Hornsund was this accompanied by a significant decrease in density and diversity, probably due to greater isolation and poorer quality of sediment organic matter in its innermost basin. -
The 17Th International Colloquium on Amphipoda
Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries. -
WMSDB - Worldwide Mollusc Species Data Base
WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F. -
Belgian Register of Marine Species
BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ........................................................................................................................................... -
Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria
Historia naturalis bulgarica, 22: 45-71, 2015 Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria Zdravko Hubenov, Lyubomir Kenderov, Ivan Pandourski Abstract: The role of the Atanasovsko Lake for storage and protection of the specific faunistic diversity, characteristic of the hyper-saline lakes of the Bulgarian seaside is presented. The fauna of the lake and surrounding waters is reviewed, the taxonomic diversity and some zoogeographical and ecological features of the invertebrates are analyzed. The lake system includes from freshwater to hyper-saline basins with fast changing environment. A total of 6 types, 10 classes, 35 orders, 82 families and 157 species are known from the Atanasovsko Lake and the surrounding basins. They include 56 species (35.7%) marine and marine-brackish forms and 101 species (64.3%) brackish-freshwater, freshwater and terrestrial forms, connected with water. For the first time, 23 species in this study are established (12 marine, 1 brackish and 10 freshwater). The marine and marine- brackish species have 4 types of ranges – Cosmopolitan, Atlantic-Indian, Atlantic-Pacific and Atlantic. The Atlantic (66.1%) and Cosmopolitan (23.2%) ranges that include 80% of the species, predominate. Most of the fauna (over 60%) has an Atlantic-Mediterranean origin and represents an impoverished Atlantic-Mediterranean fauna. The freshwater-brackish, freshwater and terrestrial forms, connected with water, that have been established from the Atanasovsko Lake, have 2 main types of ranges – species, distributed in the Palaearctic and beyond it and species, distributed only in the Palaearctic. The representatives of the first type (52.4%) predomi- nate. They are related to the typical marine coastal habitats, optimal for the development of certain species. -
Proceedings of the United States National Museum
PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM VoL 109 WMhington : 1959 No. 3412 MARINE MOLLUSCA OF POINT BARROW, ALASKA Bv Nettie MacGinitie Introduction The material upon which this study is based was collected by G. E. MacGinitie in the vicinity of Point Barrow, Alaska. His work on the invertebrates of the region (see G. E. MacGinitie, 1955j was spon- sored by contracts (N6-0NR 243-16) between the OfRce of Naval Research and the California Institute of Technology (1948) and The Johns Hopkins L^niversity (1949-1950). The writer, who served as research associate under this project, spent the. periods from July 10 to Oct. 10, 1948, and from June 1949 to August 1950 at the Arctic Research Laboratory, which is located at Point Barrow base at ap- proximately long. 156°41' W. and lat. 71°20' N. As the northernmost point in Alaska, and representing as it does a point about midway between the waters of northwest Greenland and the Kara Sea, where collections of polar fauna have been made. Point Barrow should be of particular interest to students of Arctic forms. Although the dredge hauls made during the collection of these speci- mens number in the hundreds and, compared with most "expedition standards," would be called fairly intensive, the area of the ocean ' Kerckhofl Marine Laboratory, California Institute of Technology. 473771—59 1 59 — 60 PROCEEDINGS OF THE NATIONAL MUSEUM vol. los bottom touched by the dredge is actually small in comparison with the total area involved in the investigation. Such dredge hauls can yield nothing comparable to what can be obtained from a mudflat at low tide, for instance. -
Fine Morphology of the Jaw Apparatus of Puncturella Noachina (Fissurellidae, Vetigastropoda)
JOURNAL OF MORPHOLOGY 00:00–00 (2014) Fine Morphology of the Jaw Apparatus of Puncturella noachina (Fissurellidae, Vetigastropoda) Elena Vortsepneva,1* Dmitry Ivanov,2 Gunter€ Purschke,3 and Alexander Tzetlin1 1Department of Invertebrate Zoology, Moscow State University, 119234 Moscow, Russia and White Sea Biological Station, Russia 2Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 225009 Moscow, Russia 3Zoologie, Fachbereich Biologie/Chemie, Universitat€ Osnabruck,€ 49069 Osnabruck,€ Germany ABSTRACT Jaws of various kinds occur in virtually Wingatrand, 1959), Scaphopoda (Schaefer and Hasz- all groups of Mollusca, except for Polyplacophora and prunar, 1996), and Gastropoda (Patellogastropoda, Bivalvia. Molluscan jaws are formed by the buccal epi- opisthobranch Euthyneura), the second in Gastrop- thelium and either constitute a single plate, a paired oda (Opistobranchia), Aplacophora (Ivanov and formation or a serial structure. Buccal ectodermal Starobogatov, 1990), and Cephalopoda (Boletzky, structures in gastropods are rather different. They can be nonrenewable or having final growth, like the hooks 2007), and the third is restricted to Gastropoda in Clione (Gastropoda, Gymnosomata). In this case, (opisthobranch Euthyneura; Barker and Efford, they are formed by a single cell. Conversely, they can 2002). In all molluscs, the jaw lies in the buccal cav- be renewable during the entire life span and in this ity and occupies a lateral, dorsal, or dorso-lateral case they are formed by a set of cells, like the forma- position. The lower jaw of Cephalopoda takes a ven- tion of the radula. The fine structure of the jaws was tral position and is regarded as not being homolo- studied in the gastropod Puncturella noachina. The jaw gous to the jaws of other molluscs (Boletzky, 2007). -
Trivialnamen Für Mollusken Des Meeres Und Brackwassers in Deutschland (Polyplacophora, Gastropoda, Bivalvia, Scaphopoda Et Cephalopoda)
> Mollusca 27 (1) 2009 3 3 – 32 © Museum für Tierkunde Dresden, ISSN 1864-5127, 15.04.2009 Trivialnamen für Mollusken des Meeres und Brackwassers in Deutschland (Polyplacophora, Gastropoda, Bivalvia, Scaphopoda et Cephalopoda) FRITZ GOSSELCK 1, ALEXANDER DARR 1, JÜRGEN H. JUNGBLUTH 2 & MICHAEL L. ZETTLER 3 1 Institut für Angewandte Ökologie GmbH, Alte Dorfstraße 11, D-18184 Broderstorf, Germany [email protected] 2 In der Aue 30e, D-69118 Schlierbach, Germany PROJEKTGRUPPE MOLLUSKENKARTIERUNG © [email protected] 3 Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, D-18119 Rostock, Germany [email protected] Received on July 11, 2008, accepted on February 10, 2009. Published online at www.mollusca-journal.de > Abstract German common names for marine and brackish water molluscs. – A list of common names of German marine and brackish water molluscs was compiled for the German coastal waters and the exclusive economic zone (EEZ) of the North and Baltic Seas. Main aim of this compilation is to give interested non-professionals better access to and understanding of sea shells and squids. As often long-lived and relatively stationary species, molluscs can provide a key function as water quality indicators. The taxonomic classifi cation was based on the Mollusca databases CLEMAM and ERMS (MARBEF). The list includes 309 species. > Kurzfassung Eine Liste deutscher Namen der marinen und Brackwasser-Mollusken der deutschen Küstengewässer und der Ausschließlichen Wirtschaftszone (AWZ) der Nord- und Ostsee wurde erstellt. Ziel der Zusammenstellung ist es, mit den Trivialnamen dem interessierten Laien die marinen Schnecken, Muscheln und Tintenfi sche etwas näher zu bringen.