15-441 Computer Networking Outline IP Service Model Ipv4 Header Fields

Total Page:16

File Type:pdf, Size:1020Kb

15-441 Computer Networking Outline IP Service Model Ipv4 Header Fields Outline • The IP protocol 15-441 15-441 Computer Networking • IPv4 15-641 • IPv6 Lecture 6 – The Internet Protocol • IP in practice Peter Steenkiste • Network address translation • Address resolution protocol • Tunnels Fall 2016 www.cs.cmu.edu/~prs/15-441-F16 2 IP Service Model IPv4 Header Fields • Low-level communication model provided by Internet 3 • Version: IP Version 0481216192428 ver- 1 HLe sio TOS Length • Datagram n n Fl Identifier ag Offset • 4 for IPv4 s • Each packet self-contained TTL Protocol Checksum • All information needed to get to destination Source Address • HLen: Header Length Destination Address • No advance setup or connection maintenance Options (if any) • 32-bit words (typically 5) Data • Analogous to letter or telegram • TOS: Type of Service 0 4 8 121619242831 • Priority information version HLen TOS Length • Length: Packet Length IPv4 Identifier Flag Offset • Bytes (including header) Packet TTL Protocol Checksum Header Format • Header format can change with versions Source Address • First byte identifies version Destination Address • Length field limits packets to 65,535 bytes Options (if any) • In practice, break into much smaller packets for network performance considerations Data 3 4 1 IPv4 Header Fields IP Delivery Model • Identifier, flags, fragment offset used for fragmentation • Best effort service • Time to live • Must be decremented at each router • Network will do its best to get packet to destination • Packets with TTL=0 are thrown away • Does NOT guarantee: • Ensure packets exit the network 3 0 4 8 1216192428 • Any maximum latency or even ultimate success ver- 1 HLe • Protocol sio TOS Length n n Fl Identifier ag Offset • Informing the sender if packet does not make it • Demultiplexing to higher layer protocols s TTL Protocol Checksum • TCP = 6, ICMP = 1, UDP = 17… Source Address • Delivery of packets in same order as they were sent • Header checksum Destination Address Options (if any) • Just one copy of packet will arrive • Ensures some degree of header integrity Data • Relatively weak – 16 bit • Implications • Source and destination IP addresses • Scales very well (really, it does) • Options • Higher level protocols must make up for shortcomings • E.g. Source routing, record route, etc. • Performance issues • Reliably delivering ordered sequence of bytes TCP • Poorly supported • Some services not feasible (or hard) • Latency or bandwidth guarantees 5 6 IP Fragmentation Fragmentation Related Fields MTU = • Length 2000 host router • Length of IP fragment router MTU = 1500 host • Identification MTU = 4000 • To match up with other fragments • Every network has own Maximum Transmission Unit (MTU) • Flags • Largest IP datagram it can carry within its own packet frame • Don’t fragment flag • E.g., Ethernet is 1500 bytes • More fragments flag • Don’t know MTUs of all intermediate networks in advance • Fragment offset • IP Solution • When hit network with small MTU, router fragments packet • Where this fragment lies in entire IP datagram • Destination host reassembles the paper – why? • Measured in 8 octet units (13 bit field) 7 8 2 IP Fragmentation Example #1 IP Fragmentation Example #2 MTU = 2000 router host router router MTU = 4000 Length = 2000, M=1, Offset = 0 Length = 3820, M=0 IP IP IP IP Header Data Length = 3820, M=0 Header Data IP IP 1980 bytes Header Data 3800 bytes Length = 1840, M=0, Offset = 1980 IP IP Header Data 1820 bytes 9 10 Internet Control Message Protocol Fragmentation is Harmful (ICMP) • Uses resources poorly • Short messages used to send error & other control • Forwarding costs per packet information • Best if we can send large chunks of data • Some functions supported by ICMP: • Worst case: packet just bigger than MTU • Ping request /response: check whether remote host reachable • Poor end-to-end performance • Destination unreachable: Indicates how packet got & why couldn’t • Loss of a fragment go further • Flow control: Slow down packet transmit rate • Path MTU discovery protocol determines minimum • Redirect: Suggest alternate routing path for future messages MTU along route • Router solicitation / advertisement: Helps newly connected host • Uses ICMP error messages discover local router • Common theme in system design • Timeout: Packet exceeded maximum hop limit • Assure correctness by implementing complete protocol • How useful are they functions today? • Optimize common cases to avoid full complexity 11 12 3 IP MTU Discovery with ICMP IP MTU Discovery with ICMP MTU = 2000 host router router MTU = 1500 ICMP host Frag. Needed MTU = 2000 MTU = MTU = 4000 2000 host router router MTU = 1500 • Typically send series of packets from one host to another host • Typically, all will follow same route MTU = 4000 • Routes remain stable for minutes at a time • Makes sense to determine path MTU before sending real packets Length = 4000, Don’t Fragment • Operation: Send max-sized packet with “do not fragment” flag set IP Packet • If encounters problem, ICMP message will be returned • “Destination unreachable: Fragmentation needed” • Usually indicates MTU problem encountered • ICMP abuse? Other solutions? 13 14 IP MTU Discovery with ICMP IP MTU Discovery with ICMP MTU = 2000 host ICMP router Frag. Needed router MTU = 1500 MTU = 1500 MTU = host 2000 host MTU = 4000 router router MTU = 1500 host Length = 1500, Don’t Fragment MTU = 4000 IP Packet Length = 2000, Don’t Fragment IP Packet • When successful, no reply at IP level • “No news is good news” • Higher level protocol might have some form of acknowledgement 15 16 4 Important Concepts Outline • Base-level protocol (IP) provides minimal service level • The IP protocol • Allows highly decentralized implementation • Each step involves determining next hop • IPv4 • Most of the work at the endpoints • IPv6 • ICMP provides low-level error reporting • IP forwarding global addressing, alternatives, lookup • IP in practice tables • Network address translation • IP addressing hierarchical, CIDR • IP service best effort, simplicity of routers • Address resolution protocol • IP packets header fields, fragmentation, ICMP • Tunnels 17 18 IPv6 IPv6 Address Size Discussion • “Next generation” IP. • Do we need more addresses? Probably, long term • Most urgent issue: increasing address space. • Big panic in 90s: “We’re running out of addresses!” V/Pr Flow label • Big worry: Devices. Small devices. Cell phones, toasters, • 128 bit addresses everything. • Simplified header for faster Length Next Hop L processing: • 128 bit addresses provide space for structure (good!) • No checksum (why not?) • Hierarchical addressing is much easier • Assign an entire 48-bit sized chunk per LAN – use Ethernet • No fragmentation (really?) Source IP address addresses • Support for guaranteed • Different chunks for geographical addressing, the IPv4 address services: priority and flow id space, • Options handled as “next • Perhaps help clean up the routing tables - just use one huge chunk header” per ISP and one huge chunk per customer. • reduces overhead of handling Destination IP address options Sub 010 Registry Provider Subscriber Host Net 19 20 5 IP Router Implementation: IPv6 Header Cleanup: Options Fast Path versus Slow Path • Common case: Switched in silicon (“fast path”) • 32 IPv4 options → variable length header • Almost everything • Rarely used • Weird cases: Handed to CPU (“slow path”, or “process • No development / many hosts/routers do not support switched”) • Worse than useless: Packets w/options often even get • Fragmentation dropped! • TTL expiration (traceroute) • Processed in “slow path”. • IP option handling • IPv6 options: “Next header” pointer • Slow path is evil in today’s environment • Combines “protocol” and “options” handling • “Christmas Tree” attack sets weird IP options, bits, and overloads • Next header: “TCP”, “UDP”, etc. router • Extensions header: Chained together • Developers cannot (really) use things on the slow path • Makes it easy to implement host-based options • Slows down their traffic – not good for business • One value “hop-by-hop” examined by intermediate • If it became popular, they are in trouble! routers • E.g., “source route” implemented only at intermediate hops 21 22 IPv6 Header Cleanup: “no” Migration from IPv4 to IPv6 • No checksum • Interoperability with IP v4 is necessary for incremental • Motivation was efficiency: If packet corrupted at hop 1, deployment. don’t waste b/w transmitting on hops 2..N. • No “flag day” • Useful when corruption frequent, b/w expensive • Fundamentally hard because a (single) IP protocol is • Today: corruption is rare, bandwidth is cheap critical to achieving global connectivity across the internet • No fragmentation • Process uses a combination of mechanisms: • Router discard packets, send ICMP “Packet Too Big” • Dual stack operation: IP v6 nodes support both address types → host does MTU discovery and fragments • Tunnel IP v6 packets through IP v4 clouds • IPv4-IPv6 translation at edge of network • Reduced packet processing and network complexity. • NAT must not only translate addresses but also translate between IPv4 • Increased MTU a boon to application writers and IPv6 protocols • Hosts can still fragment - using fragmentation header. • IPv6 addresses based on IPv4 – no benefit! Routers don’t deal with it any more. • 20 years later, this is still a major challenge! 23 24 6.
Recommended publications
  • Network Layer 2
    Network Layer Topics • Network service models • Datagrams (packets), virtual circuits • IP (Internet Protocol) • Internetworking • Forwarding (Longest Matching Prefix) • Helpers: ARP and DHCP • Fragmentation and MTU discovery • Errors: ICMP (traceroute!) • IPv6, scaling IP to the world • NAT, and “middleboxs” • Routing Algorithms CSE 461 University of Washington 2 Dynamic Host Configuration Protocol (DHCP) Bootstrapping •Problem: • A node wakes up for the first time … • What is its IP address? What’s the IP address of its router? • At least Ethernet address is on NIC What’s my IP? CSE 461 University of Washington 4 Bootstrapping 1. Manual configuration (old days) • Can’t be factory set, depends on use 2. DHCP: Automatically configure addresses • Shifts burden from users to IT folk What’s my IP? Use A.B.C.D CSE 461 University of Washington 5 DHCP •DHCP (Dynamic Host Configuration Protocol), from 1993, widely used •It leases IP address to nodes •Provides other parameters too • Network prefix • Address of local router • DNS server, time server, etc. CSE 461 University of Washington 6 DHCP Protocol Stack •DHCP is a client-server application • Uses UDP ports 67, 68 DHCP UDP IP Ethernet CSE 461 University of Washington 7 DHCP Addressing •Bootstrap issue: • How does node send a message to DHCP server before it is configured? •Answer: • Node sends broadcast messages that delivered to all nodes on the network • Broadcast address is all 1s • IP (32 bit): 255.255.255.255 • Ethernet/MAC (48 bit): ff:ff:ff:ff:ff:ff CSE 461 University of Washington
    [Show full text]
  • Ip Fragmentation
    NETWORKING CASE STUDY IN STEM EDUCATION - IP FRAGMENTATION M. Mikac1, M. Horvatić2, V. Mikac2 1Inter-biz, Informatic Services (CROATIA) 2University North (CROATIA) Abstract In the last decade, or even longer, computer networking has been a field that cannot be overseen in technical and STEM education. While technological development and affordable prices brought powerful network devices to the end-user, all the networking principles are still based (and probably will remain so) on old protocols developed back in the ‘60s and the ‘70s of the twentieth century. Therefore, it can be expected that understanding the basics of networking principles is something that future engineers should be familiar with. The global network of today, the Internet, is based on a TCP/IP stack of protocols. That is the fact that is not to be changed - the most important change that seems to be predictable will be wider acceptance and usage of a newer version of Internet Protocol (IP) - IPv6 increases its adoption in the global network but it is still under 30%. Even though different modifications of certain transport (TCP, UDP) and network (IP) protocols appeared, essentially the basics are still based on old protocols and most of the network traffic is still using the good old TCP/IP stack. In order to explain the basic functional principles of today’s networks, different kinds of case studies in real-networks or emulated environments can be introduced to students. Among those, one of the case studies we use in our education is related to explaining, the so-called, IP fragmentation - the process that sometimes "automagically" appears in IP network protocol-based networks when certain constraints are met.
    [Show full text]
  • The GINI Router
    The GINI Router: A Routing Element for User-level Micro Internet by Weiling Xu DEPARTMENT OF COMPUTER SCIENCE MCGILL UNIVERSITY, MONTREAL JUNE,2004 A THESIS SUBMITTED TO MCGILL UNIVERSITY IN PARTIAL FULFILMENT OF THE REQUlREMENTS OF THE DEGREE OF MASTER OF SCIENCE © Weiling Xu 2004 Library and Bibliothèque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 0-494-06476-5 Our file Notre référence ISBN: 0-494-06476-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell th es es le monde, à des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse. this thesis. Neither the thesis Ni la thèse ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent être imprimés ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Guidelines for the Secure Deployment of Ipv6
    Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]
  • Cisco − IP Fragmentation and PMTUD Cisco − IP Fragmentation and PMTUD Table of Contents
    Cisco − IP Fragmentation and PMTUD Cisco − IP Fragmentation and PMTUD Table of Contents IP Fragmentation and PMTUD.........................................................................................................................1 Introduction..............................................................................................................................................1 IP Fragmentation and Reassembly...........................................................................................................1 Issues with IP Fragmentation............................................................................................................3 Avoiding IP Fragmentation: What TCP MSS Does and How It Works...........................................4 Problems with PMTUD.....................................................................................................................6 Common Network Topologies that Need PMTUD...........................................................................9 What Is PMTUD?..................................................................................................................................11 What Is a Tunnel?..................................................................................................................................11 Considerations Regarding Tunnel Interfaces..................................................................................12 The Router as a PMTUD Participant at the Endpoint of a Tunnel..................................................13
    [Show full text]
  • RFC 6349 Testing with Truespeed™ from JDSU—Experience Your
    RFC 6349 Testing with TrueSpeed™ from JDSU— Experience Your Network as Your Customers Do RFC 6349 is the new transmission control protocol (TCP) throughput test methodology that JDSU co-authored along with representatives from Bell Canada and Deutsche Telecom. Recently issued by the Internet Engineering Task Force (IETF) organization, RFC 6349 provides a repeatable test method for TCP throughput analysis with systematic processes, metrics, and guidelines to optimize the network and server performance. This application note summarizes RFC 6349, “Framework for TCP Throughput Testing,” and highlights the automated and fully compliant JDSU RFC 6349 implementation, TrueSpeed, now available on the JDSU T-BERD®/MTS-6000A Multi-Services Application Module (MSAM) and T-BERD/MTS-5800 Handheld Network Tester. This application note also discusses the integration of TrueSpeed RFC 6349 with the ITU Y.1564 Ethernet service activation standard. This powerful testing combination provides a comprehensive means to ensure an optimized end-customer experience in multi-service (such as triple play) environments. RFC 6349 TCP Test Methodology RFC 6349 specifies a practical methodology for measuring end-to-end TCP throughput in a managed IP network with a goal of providing a better indication of the user experience. In the RFC 6349 framework, TCP and IP parameters are also specified to optimize TCP throughput. RFC 6349 recommends always conducting a Layer 2/3 turn-up test before TCP testing. After verifying the network at Layer 2/3, RFC 6349 specifies conducting
    [Show full text]
  • The PTB-PTS ICMP-Based Attack Against Ipsec Gateways Vincent Roca, Saikou Fall
    Too Big or Too Small? The PTB-PTS ICMP-based Attack against IPsec Gateways Vincent Roca, Saikou Fall To cite this version: Vincent Roca, Saikou Fall. Too Big or Too Small? The PTB-PTS ICMP-based Attack against IPsec Gateways. 2016, pp.16. hal-01178390 HAL Id: hal-01178390 https://hal.inria.fr/hal-01178390 Submitted on 19 Jul 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IPsec Maintenance and Evolution (IPSECME) V. Roca Internet-Draft S. Fall Intended status: Informational INRIA Expires: January 7, 2016 July 6, 2015 Too Big or Too Small? The PTB-PTS ICMP-based Attack against IPsec Gateways draft-roca-ipsecme-ptb-pts-attack-00 Abstract This document introduces the "Packet Too Big"-"Packet Too Small" Internet Control Message Protocol (ICMP) based attack against IPsec gateways. We explain how an attacker having eavesdropping and packet injection capabilities, from the unsecure network where he only sees encrypted packets, can force a gateway to reduce the Path Maximum Transmission Unit (PMTU) of an IPsec tunnel to the minimum, which can trigger severe issues for the hosts behind this gateway: with a Linux host, depending on the PMTU discovery algorithm in use (i.e., PMTUd versus PLPMTUd) and protocol (TCP versus UDP), the attack either creates a Denial of Service or major performance penalties.
    [Show full text]
  • Exploring Usable Path MTU in the Internet
    Exploring usable Path MTU in the Internet Ana Custura Gorry Fairhurst Iain Learmonth University of Aberdeen University of Aberdeen University of Aberdeen Abstract—To optimise their transmission, Internet endpoints methodologies and tools [7] [8], providing an up-to-date need to know the largest size of packet they can send across PMTUD behaviour report for both IPv4 and IPv6. a specific Internet path, the Path Maximum Transmission Unit We include an in-depth exploration of server and client (PMTU). This paper explores the PMTU size experienced across the Internet core, wired and mobile edge networks. advertised Maximum Segment Size (MSS), taking advantage Our results show that MSS Clamping has been widely deployed of existing measurement platforms, MONROE [9] and RIPE in edge networks, and some webservers artificially reduce their Atlas [10], and using or extending existing tools Netalyzr [11] advertised MSS, both of which we expect help avoid PMTUD and PATHspider [12]. failure for TCP. The maximum packet size used by a TCP We also look at ICMP quotation health and analyze a connection is also constrained by the acMSS. MSS Clamping was observed in over 20% of edge networks tested. We find a large number of ICMP quotations from a previous large- significant proportion of webservers that advertise a low MSS scale measurement campaign. These results provide important can still be reached with a 1500 byte packet. We also find more insight to inform the design of new methods that can robustly than half of IPv6 webservers do not attempt PMTUD and clamp discover the PMTU for UDP traffic where there are currently the MSS to 1280 bytes.
    [Show full text]
  • ICMP Attacks Against TCP
    ICMP attacks against TCP Author: Fernando Gont Email: [email protected] http:/ /www.gont.com.ar Universidad Tecnológica Nacional February 200 6 Internet -Draft / ICMP attacks against TCP OWASP Papers Program February , 2006 Table of Contents Abstract .............................................................................................................................................. 3 A1 Introduction........................................................................................................................... 4 A2 Background ............................................................................................................................ 5 A2.1 The Internet Control Message Protocol (ICMP) .................. 5 2.1.1 ICMP for IP version 4 (ICMP) ................................ ...... 5 2.1.2 ICMP for IP version 6 (ICMPv6) ................................ .... 5 A2.2 Handli ng of ICMP error messages ............................... 6 A3 Constraints in the possible solutions ................................................................................... 7 A4 General counter -measures against ICMP attacks ............................................................. 8 A4.1 TCP sequence number checking ................................ .. 8 A4.2 Port randomization ................................ ............ 8 A4.3 Fil tering ICMP error messages based on the ICMP payload ....... 9 A5 Blind connection-reset attack ............................................................................................
    [Show full text]
  • On Improved Generalization of 5-State Hidden Markov Model-Based Internet Traffic
    On Improved Generalization of 5-State Hidden Markov Model-based Internet Traffic Classifiers by Grant H. R. Bartnik A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science Guelph, Ontario, Canada c Grant H. R. Bartnik, May, 2013 ABSTRACT On Improved Generalization of 5-State Hidden Markov Model-based Internet Traffic Classifiers Grant H. R. Bartnik Advisors: University of Guelph, 2013 Dr. Stefan C. Kremer The multitude of services delivered over the Internet would have been diffi- cult to fathom 40 years ago when much of the initial design was being undertaken. As a consequence, the resulting architecture did not make provisions for differentiating between, and managing the potentially conflicting requirements of different types of services such as real-time voice communication and peer-to-peer file sharing. This shortcoming has resulted in a situation whereby services with conflicting require- ments often interfere with each other and ultimately decrease the effectiveness of the Internet as an enabler of new and transformative services. The ability to passively identify different types of Internet traffic then would address this shortcoming and enable effective management of conflicting types of services, in addition to facilitating a better understanding of how the Internet is used in general. Recent attempts at developing such techniques have shown promising results in simulation environments but perform considerably worse when deployed into real-world scenarios. One possi- ble reason for this descrepancy can be attributed to the implicit assumption shared by recent approaches regarding the degree of similarity between the many networks which comprise the Internet.
    [Show full text]
  • RFC 8900: IP Fragmentation Considered Fragile
    Stream: Internet Engineering Task Force (IETF) RFC: 8900 BCP: 230 Category: Best Current Practice Published: September 2020 ISSN: 2070-1721 Authors: R. Bonica F. Baker G. Huston R. Hinden O. Troan F. Gont Juniper Networks Una�liated APNIC Check Point Software Cisco SI6 Networks RFC 8900 IP Fragmentation Considered Fragile Abstract This document describes IP fragmentation and explains how it introduces fragility to Internet communication. This document also proposes alternatives to IP fragmentation and provides recommendations for developers and network operators. Status of This Memo This memo documents an Internet Best Current Practice. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8900. Copyright Notice Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
    [Show full text]
  • 07-Fragmentation+Ipv6+NAT Posted.Pptx
    IP Fragmentation & Reassembly Network links have MTU (maximum transmission unit) – the largest possible link-level frame Computer Networks • different link types, different MTUs • not including frame header/trailer fragmentation: • in: one large datagram but including any and all headers out: 3 smaller datagrams above the link layer Large IP datagrams are split up reassembly Lecture 7: IP Fragmentation, (“fragmented”) in the network IPv6, NAT • each with its own IP header • fragments are “reassembled” only at final destination (why?) • IP header bits used to identify and order related fragments IPv4 Packet Header Format IP Fragmentation and Reassembly 4 bits 4 bits 8 bits 16 bits Example: 4000-byte datagram unique per datagram hdr len Type of Service MTU = 1500 bytes usually IPv4 version per source (bytes) (TOS) Total length (bytes) 3-bit One large datagram length ID IP fragmentation use Identification 13-bit Fragment Offset fragflag offset flags becomes several =4000 =x =0 =0 upper layer protocol 20-byte to deliver payload to, Time to Protocol Header Checksum Header smaller datagrams e.g., ICMP (1), UDP (17), Live (TTL) 1480 bytes in offset = TCP (6) • all but the last fragments data field 1480/8 Source IP Address must be in multiple of 8 length ID fragflag offset Destination IP Address bytes =1500 =x =MF =0 e.g. timestamp, • offsets are specified in record route, Options (if any) length ID fragflag offset source route unit of 8-byte chunks =1500 =x =MF =185 • IP header = 20 bytes (1 Payload (e.g., TCP/UDP packet, max size?) length ID fragflag offset
    [Show full text]