Potential Temperature, Oxygen and Circulation of Bottom Water in the Southern Ocean*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Antarctic Coastal Current in the Bellingshausen Sea
The Cryosphere, 15, 4179–4199, 2021 https://doi.org/10.5194/tc-15-4179-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The Antarctic Coastal Current in the Bellingshausen Sea Ryan Schubert1, Andrew F. Thompson3, Kevin Speer1, Lena Schulze Chretien4, and Yana Bebieva1,2 1Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida 32306, USA 2Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306, USA 3Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA 4Department of Biology and Marine Science, Marine Science Research Institute, Jacksonville University, Jacksonville, Florida, USA Correspondence: Ryan Schubert ([email protected]) Received: 4 February 2021 – Discussion started: 19 February 2021 Revised: 20 July 2021 – Accepted: 21 July 2021 – Published: 1 September 2021 Abstract. The ice shelves of the West Antarctic Ice Sheet 1 Introduction experience basal melting induced by underlying warm, salty Circumpolar Deep Water. Basal meltwater, along with runoff from ice sheets, supplies fresh buoyant water to a circula- The Antarctic continental slope in West Antarctica, spanning tion feature near the coast, the Antarctic Coastal Current the West Antarctic Peninsula (WAP) to the western Amund- (AACC). The formation, structure, and coherence of the sen Sea, is characterized by a shoaling of the subsurface tem- AACC has been well documented along the West Antarc- perature maximum, which allows warm, salty Circumpolar tic Peninsula (WAP). Observations from instrumented seals Deep Water (CDW) greater access to the continental shelf. collected in the Bellingshausen Sea offer extensive hydro- This leads to an increase in the oceanic heat content over the graphic coverage throughout the year, providing evidence of shelf in this region compared to other Antarctic shelf seas the continuation of the westward flowing AACC from the (Schmidtko et al., 2014). -
Variability in the Location. of the Antarctic Polar Front (90 °
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. C13, PAGES 27,825-27,833, DECEMBER 15, !997 Variability in the location.of the Antarctic Polar Front (90ø- 20øW) from satellite sea surface temperature data J. Keith Moore, Mark R. Abbott, and James G. Richman Collegeof Oceanicand AtmosphericSciences, Oregon State University, Corvallis Abstract. The path of the AntarcticPolar Front (PF) is mappedusing satellite sea surfacetemperature data from the NOAA/NASA Pathfinderprogram. The mean path and variabilityof the PF are stronglyinfluenced by bathymetry.Meandering intensity is weaker where the bathymetryis steeplysloped and increasesin areaswhere the bottom is relativelyflat. There is an inverserelationship between meandering intensity and both the width of the front and the changein temperatureacross it. There is a persistent,large separationbetween the surfaceand subsurfaceexpressions of the PF at Ewing Bank on the Falkland Plateau. 1. Introduction of meanderingjets and fronts hasbeen done previouslyfor the PF [Legeckis,1977] and other strongfrontal systems[Hansen TheAntarctic Polar Front (PF) is a strongjet within t•e and Maul, 1970; Olsonet al., 1983; Cornilion, 1986]. Antarctic CircumpolarCurrent (ACG), which flowseastward Satellite altimeter data has shown that there is little zonal continuouslyaround Antarctica [Nowlin and Klinck, 1986].The coherencein the variabilityof the ACC [Fu and Chelton,1984; PF, also known as the Antarctic Convergence,is the location Sandwelland Zhang, 1989; Chelton et al., 1990; Gille, 1994; where Antarctic surfacewaters movingto the north sink rap- Gille and Kelly,1996]. These studies emphasize the importance idly belowSubantarctic waters [Deacon, 1933, 1937].Thus the of local and regionalinstabilities [Chelton et al., 1990;Gille and PF is a regionof elevatedcurrent speeds and stronghorizontal Kelly,1996]. -
Federal Register/Vol. 86, No. 147/Wednesday, August 4, 2021
Federal Register / Vol. 86, No. 147 / Wednesday, August 4, 2021 / Proposed Rules 41917 Bureau at (202) 418–0530 (VOICE), (202) Community Channel No. (1) Electronically: Go to the Federal 418–0432 (TTY). eRulemaking Portal: http:// This document does not contain www.regulations.gov. In the Search box, information collection requirements ***** enter FWS–HQ–ES–2021–0043, which subject to the Paperwork Reduction Act is the docket number for this of 1995, Public Law 104–13. In addition, NEVADA rulemaking. Then, click on the Search therefore, it does not contain any button. On the resulting page, in the proposed information collection burden ***** Search panel on the left side of the ‘‘for small business concerns with fewer Henderson ............................ 24 screen, under the Document Type than 25 employees,’’ pursuant to the heading, check the Proposed Rule box to Small Business Paperwork Relief Act of ***** locate this document. You may submit 2002, Public Law 107–198, see 44 U.S.C. a comment by clicking on ‘‘Comment.’’ 3506(c)(4). Provisions of the Regulatory [FR Doc. 2021–16589 Filed 8–3–21; 8:45 am] (2) By hard copy: Submit by U.S. mail Flexibility Act of 1980, 5 U.S.C. 601– BILLING CODE 6712–01–P to: Public Comments Processing, Attn: 612, do not apply to this proceeding. FWS–HQ–ES–2021–0043, U.S. Fish and Members of the public should note Wildlife Service, MS: PRB/3W, 5275 that all ex parte contacts are prohibited DEPARTMENT OF THE INTERIOR Leesburg Pike, Falls Church, VA 22041– from the time a Notice of Proposed 3803. -
Variability in Cenozoic Sedimentation Along the Continental Rise of the Bellingshausen Sea, West Antarctica ⁎ Carsten Scheuer A, , Karsten Gohl A, Robert D
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Marine Geology 227 (2006) 279–298 www.elsevier.com/locate/margeo Variability in Cenozoic sedimentation along the continental rise of the Bellingshausen Sea, West Antarctica ⁎ Carsten Scheuer a, , Karsten Gohl a, Robert D. Larter b, Michele Rebesco c, Gleb Udintsev d a Alfred Wegener Institute for Polar and Marine Research (AWI), Postfach 120161, D-27515, Bremerhaven, Germany b British Antarctic Survey (BAS), High Cross, Madingley Road, Cambridge CB3 OET, UK c Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/C, 34010 Sconico (TS), Italy d Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19, Kosygin Str, 117975 Moscow, Russia Received 29 September 2004; received in revised form 16 December 2005; accepted 21 December 2005 Abstract Seismic reflection profiles, bathymetric and magnetic data collected along and across the continental margin of the Bellingshausen Sea provide new constraints and interpretations of the oceanic basement structure and Cenozoic glacial history of West Antarctica. Evidence for tectonic boundaries that lie perpendicular to the margin has been identified on the basis of one previously unpublished along-slope multichannel seismic reflection profile. By combining several magnetic data sets, we determined basement ages and verified the positions of possible fracture zones, enabling us to improve previous tectonic and stratigraphic models. We establish three main sediment units on the basis of one seismic along-slope profile and by correlation to the continental shelf via one cross-slope profile. We interpret a lowermost unit, Be3 (older then 9.6 Ma), as representing a long period of slow accumulation of mainly turbiditic sediments. -
Modification and Pathways of Southern Ocean Deep Waters in the Scotia
Deep-Sea Research I 49 (2002) 681–705 Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea Alberto C. Naveira Garabatoa,*, Karen J. Heywooda, David P. Stevensb a School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK b School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK Received 11 September 2000; received in revised form 11 June 2001; accepted 23 October 2001 Abstract An unprecedented high-quality, quasi-synoptic hydrographic data set collected during the ALBATROSS cruise along the rim of the Scotia Sea is examined to describe the pathways of the deep water masses flowing through the region, and to quantify changes in their properties as they cross the sea. Owing to sparse sampling of the northern and southern boundaries of the basin, the modification and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global significance. Weddell Sea Deep Water (WSDW) of two distinct types is observed spilling over the South Scotia Ridge to the west and east of the western edge of the Orkney Passage. The colder and fresher type in the west, recently ventilated in the northern Antarctic Peninsula, flows westward to Drake Passage along the southern margin of the Scotia Sea while mixing intensely with eastward-flowing Circumpolar Deep Water (CDW) of the antarctic circumpolar current (ACC). Although a small fraction of the other WSDW type also spreads westward to Drake Passage, the greater part escapes the Scotia Sea eastward through the Georgia Passage and flows into the Malvinas Chasm via a deep gap northeast of South Georgia. -
Chapter 4 Tectonic Reconstructions of the Southernmost Andes and the Scotia Sea During the Opening of the Drake Passage
123 Chapter 4 Tectonic reconstructions of the Southernmost Andes and the Scotia Sea during the opening of the Drake Passage Graeme Eagles Alfred Wegener Institute, Helmholtz Centre for Marine and Polar Research, Bre- merhaven, Germany e-mail: [email protected] Abstract Study of the tectonic development of the Scotia Sea region started with basic lithological and structural studies of outcrop geology in Tierra del Fuego and the Antarctic Peninsula. To 19th and early 20th cen- tury geologists, the results of these studies suggested the presence of a submerged orocline running around the margins of the Scotia Sea. Subse- quent increases in detailed knowledge about the fragmentary outcrop ge- ology from islands distributed around the margins of the Scotia Sea, and later their interpretation in light of the plate tectonic paradigm, led to large modifications in the hypothesis such that by the present day the concept of oroclinal bending in the region persists only in vestigial form. Of the early comparative lithostratigraphic work in the region, only the likenesses be- tween Jurassic—Cretaceous basin floor and fill sequences in South Geor- gia and Tierra del Fuego are regarded as strong enough to be useful in plate kinematic reconstruction by permitting the interpretation of those re- gions’ contiguity in mid-Mesozoic times. Marine and satellite geophysical data sets reveal features of the remaining, submerged, 98% of the Scotia 124 Sea region between the outcrops. These data enable a more detailed and quantitative approach to the region’s plate kinematics. In contrast to long- used interpretations of the outcrop geology, these data do not prescribe the proximity of South Georgia to Tierra del Fuego in any past period. -
Ice Core Records of 20Th Century Sea Ice Decline in the Bellingshausen Sea, Geophysical Research Letters, Submitted
R. Röthlisberger and N. Abram Abram, N., McConnell, J.R., Thomas, E.R., Mulvaney, R. and Aristarain, A.J., 2008: Ice core records of 20th century sea ice decline in the Bellingshausen Sea, Geophysical Research Letters, submitted. Abram, N., Mulvaney, R., Wolff, E.W. and Mudelsee, M., 2007: Ice core records as sea ice proxies: an evaluation from the Weddell Sea region of Antarctica, Journal of Geophysical Research, 112: D15101, doi:15110.11029/12006JD008139. Castebrunet, H., Genthon, C. and Martinerie, P., 2006: Sulfur cycle at Last Glacial Maximum: Model results versus Antarctic ice core data, Geophysical Research Letters, 33: L22711, doi:10.1029/2006GL027681. Crosta, X., Sturm, A., Armand, L. and Pichon, J.J., 2004: Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages, Marine Micropaleontology, 50: 209-223. Curran, M.A.J. and Jones, G.B., 2000: Dimethyl sulfide in the Southern Ocean: Seasonality and flux, Journal of Geophysical Research, 105: 20451-20459. Curran, M.A.J., van Ommen, T.D., Morgan, V.I., Phillips, K.L. and Palmer, A.S., 2003: Ice core evidence for Antarctic sea ice decline since the 1950s, Science, 302: 1203-1206. Foster, A.F.M., Curran, M.A.J., Smith, B.T., van Ommen, T.D. and Morgan, V.I., 2006: Covariation of sea ice and methanesulphonic acid in Wilhelm II Land, East Antarctica, Annals of Glaciology, 44: 429-432. Fundel, F., Fischer, H., Weller, R., Traufetter, F., Oerter, H. and Miller, H., 2006: Influence of large-scale teleconnection patterns on methane sulfonate ice core records in Dronning Maud Land, Journal of Geophysical Research, 111: (D04103), doi:10.1029/2005JD005872. -
Towards Ice-Core-Based Synoptic Reconstructions of West Antarctic Climate with Artificial Neural Networks
INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 25: 581–610 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/joc.1143 TOWARDS ICE-CORE-BASED SYNOPTIC RECONSTRUCTIONS OF WEST ANTARCTIC CLIMATE WITH ARTIFICIAL NEURAL NETWORKS DAVID B. REUSCH,a,* BRUCE C. HEWITSONb and RICHARD B. ALLEYa a Department of Geosciences and EMS Environment Institute, The Pennsylvania State University, University Park, PA 16802 USA b Department of Environmental and Geographical Sciences, University of Cape Town, Private Bag, Rondebosch 7701, South Africa Received 9 March 2004 Revised 22 August 2004 Accepted 12 November 2004 ABSTRACT Ice cores have, in recent decades, produced a wealth of palaeoclimatic insights over widely ranging temporal and spatial scales. Nonetheless, interpretation of ice-core-based climate proxies is still problematic due to a variety of issues unrelated to the quality of the ice-core data. Instead, many of these problems are related to our poor understanding of key transfer functions that link the atmosphere to the ice. This study uses two tools from the field of artificial neural networks (ANNs) to investigate the relationship between the atmosphere and surface records of climate in West Antarctica. The first, self-organizing maps (SOMs), provides an unsupervised classification of variables from the mid- troposphere (700 hPa temperature, geopotential height and specific humidity) into groups of similar synoptic patterns. An SOM-based climatology at annual resolution (to match ice-core data) has been developed for the period 1979–93 based on the European Centre for Medium-Range Weather Forecasts (ECMWF) 15-year reanalysis (ERA-15) dataset. This analysis produced a robust mapping of years to annual-average synoptic conditions as generalized atmospheric patterns or states. -
Glacial Ocean Circulation and Stratification Explained by Reduced
Glacial ocean circulation and stratification explained by reduced atmospheric temperature Malte F. Jansena,1 aDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved November 7, 2016 (received for review June 27, 2016) Earth’s climate has undergone dramatic shifts between glacial and We test the connection between atmospheric temperature interglacial time periods, with high-latitude temperature changes and ocean circulation and stratification changes, using idealized on the order of 5–10 ◦C. These climatic shifts have been asso- numerical simulations, which allow us to isolate the proposed ciated with major rearrangements in the deep ocean circulation mechanism. We use a coupled ocean–sea-ice model, with atmo- and stratification, which have likely played an important role in spheric temperature, winds, and evaporation–precipitation pre- the observed atmospheric carbon dioxide swings by affecting the scribed as boundary conditions (Materials and Methods). The partitioning of carbon between the atmosphere and the ocean. model uses an idealized continental configuration resembling the The mechanisms by which the deep ocean circulation changed, Atlantic and Southern Oceans, where the most elemental circu- however, are still unclear and represent a major challenge to our lation changes have been inferred (3, 5, 6, 12). understanding of glacial climates. This study shows that vari- ous inferred changes in the deep ocean circulation and stratifica- Results tion between glacial and interglacial climates can be interpreted We first focus on the model’s ability to reproduce key features as a direct consequence of atmospheric temperature differences. -
Antarctic Sea Ice Control on Ocean Circulation in Present and Glacial Climates
Antarctic sea ice control on ocean circulation in present and glacial climates Raffaele Ferraria,1, Malte F. Jansenb, Jess F. Adkinsc, Andrea Burkec, Andrew L. Stewartc, and Andrew F. Thompsonc aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bAtmospheric and Oceanic Sciences Program, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08544; and cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited* by Edward A. Boyle, Massachusetts Institute of Technology, Cambridge, MA, and approved April 16, 2014 (received for review December 31, 2013) In the modern climate, the ocean below 2 km is mainly filled by waters possibly associated with an equatorward shift of the Southern sinking into the abyss around Antarctica and in the North Atlantic. Hemisphere westerlies (11–13), (ii) an increase in abyssal stratifi- Paleoproxies indicate that waters of North Atlantic origin were instead cation acting as a lid to deep carbon (14), (iii)anexpansionofseaice absent below 2 km at the Last Glacial Maximum, resulting in an that reduced the CO2 outgassing over the Southern Ocean (15), and expansion of the volume occupied by Antarctic origin waters. In this (iv) a reduction in the mixing between waters of Antarctic and Arctic study we show that this rearrangement of deep water masses is origin, which is a major leak of abyssal carbon in the modern climate dynamically linked to the expansion of summer sea ice around (16). Current understanding is that some combination of all of these Antarctica. A simple theory further suggests that these deep waters feedbacks, together with a reorganization of the biological and only came to the surface under sea ice, which insulated them from carbonate pumps, is required to explain the observed glacial drop in atmospheric forcing, and were weakly mixed with overlying waters, atmospheric CO2 (17). -
Article Size, 12 Nm Pore Size; YMC Collision Energy 15, 22.5, and 30; Isolation Window 1.0 M/Z)
Biogeosciences, 18, 3485–3504, 2021 https://doi.org/10.5194/bg-18-3485-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas Charlotte L. Spencer-Jones1, Erin L. McClymont1, Nicole J. Bale2, Ellen C. Hopmans2, Stefan Schouten2,3, Juliane Müller4, E. Povl Abrahamsen5, Claire Allen5, Torsten Bickert6, Claus-Dieter Hillenbrand5, Elaine Mawbey5, Victoria Peck5, Aleksandra Svalova7, and James A. Smith5 1Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK 2NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands 3Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands 4Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany 5British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 6MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany 7School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK Correspondence: Charlotte L. Spencer-Jones ([email protected]) Received: 7 September 2020 – Discussion started: 5 November 2020 Revised: 3 March 2021 – Accepted: 23 March 2021 – Published: 11 June 2021 Abstract. The West Antarctic Ice Sheet (WAIS) is one of compassing the sub-Antarctic front through to the southern the largest potential sources of future sea-level rise, with boundary of the Antarctic Circumpolar Current. IPL-GDGTs glaciers draining the WAIS thinning at an accelerating rate with low cyclic diversity were detected throughout the water over the past 40 years. -
Chapter 7 Arctic Oceanography; the Path of North Atlantic Deep Water
Chapter 7 Arctic oceanography; the path of North Atlantic Deep Water The importance of the Southern Ocean for the formation of the water masses of the world ocean poses the question whether similar conditions are found in the Arctic. We therefore postpone the discussion of the temperate and tropical oceans again and have a look at the oceanography of the Arctic Seas. It does not take much to realize that the impact of the Arctic region on the circulation and water masses of the World Ocean differs substantially from that of the Southern Ocean. The major reason is found in the topography. The Arctic Seas belong to a class of ocean basins known as mediterranean seas (Dietrich et al., 1980). A mediterranean sea is defined as a part of the world ocean which has only limited communication with the major ocean basins (these being the Pacific, Atlantic, and Indian Oceans) and where the circulation is dominated by thermohaline forcing. What this means is that, in contrast to the dynamics of the major ocean basins where most currents are driven by the wind and modified by thermohaline effects, currents in mediterranean seas are driven by temperature and salinity differences (the salinity effect usually dominates) and modified by wind action. The reason for the dominance of thermohaline forcing is the topography: Mediterranean Seas are separated from the major ocean basins by sills, which limit the exchange of deeper waters. Fig. 7.1. Schematic illustration of the circulation in mediterranean seas; (a) with negative precipitation - evaporation balance, (b) with positive precipitation - evaporation balance.