By W. E. Ricker News from Siberia

Total Page:16

File Type:pdf, Size:1020Kb

By W. E. Ricker News from Siberia News from Siberia by W. E. Ricker News from Siberia An old shaman had 333 sons but only one daughter, named Angara. She was the apple of his eye and he guarded her jealously, but somehow she fell in love with a youth named Yenisei who lived many leagues to the west. Early one morning Angara quietly left home and set out to join her lover. When the shaman woke and found her gone he was furious. With his magical powers he seized a huge rock and hurled it after her. But it fell short, Angara continued on her way, eventually found Yenisei, and the two journeyed together down to the polar sea. The proof of this story is that the big rock can still be seen where the Angara leaves Lake Baikal, and it is still called the shaman's stone, shamanskii kamen'. io-day the Angara­ Yenisei is the next major USSR river system that is to get the !;cascade" treatment of dams throughout its full °length. The first one is just above Irkutsk; it backs the river up right to tne lake and raises the lake level 1 or 2 metres. It also drow~ed the tracks of the trans-Siberian railway, which was rerouted over the hills -- a shorter distance but with a considerable grade and less exciting scenery. Next downstream :s the Bratsk dam, said to produce more power than any other s~ng~e unit in the world, and a third is under construction. ~he Yenisei has one dam so far, above Krasnoyarsk. The reason -2- for selecting this system for early development, in preference to the Ob for example, is that it has a steeper gradient and flows through regions particularly rich in coal and ores of various sorts, so that major industrial developments are projected. The only important migratory fish to be affected is the inconnu, and its stock is not particularly large. On balance they hope for increased fish production from the increased water area. In any event, among Siberian Rivers the Yenisei, Lena and Indigirka all have relatively small fish stocks and fisheries. Those of the Ob are 15 or 20 times as great, and for a very interesting reason. In the lower 1000 km or so of its course the Ob lacks oxygen in winter, and fish (mainly coregonids) have to evacuate it -- some wintering in the brackish Ob Gulf, others upstream. In spring the fish rush back into the 'dead' zone and utilize the rich growth of plankton and benthos that blooms rapidly during the growing season. Incidentally, the Ob inconnu run upstream as far as Novosibirsk, where a dam s·tops them, and in its tributary the Irtysh they even get into China -- a distance of at least 5000 km as the river flows. If the fish that reach China have come all the way from salt water, this considerably exceeds the longest known salmon migrations, on the Yukon and Amur Eivers. Cossacks arrived in the Angara valley during the 1620 1 s and the town of Irkutsk was founded a generation later. From the beginning the Baikal '·' sea 11 fascinated the Russians. There -3- is a long song in the heroic style, composed during the last century and still sung, which extols the lake's beauties and the accomplishments of its peoples. The trans-Siberian railway originally had an "aquatic" section, a trip across Baikal by steamship in summer, or on tracks laid across the ice in winter later replaced by shore-line trackage. Biological interest dates back to Pallas and others in the late 1700's, but the first extensive description of the fauna and physical conditions was by two enthusiasts, B. I. Dybovsky and V. Godlevsky, who sounded, dredged and collected during 1869 and 1870, using their private means to defray expenses. After the railway was built an expedition led by Professor A. A. Korotnev sailed the lake fo~ three years, 1900-02. The first biological station was established in 1919 by the Academy of Sciences, later taken over by Irkutsk university. After a large-scale Academy 11 Expedition 11 in 1925-27, in 1928 a new biological station (later called Limnological Station, now Limnological Institute) was opened and still flourishes. It is situated near the lake's outlet at the village of Listvyanka or Listven{chnoe (both names are used, derived from l1stvinnitsa =larch). A creek nearly was the scene of a gold rush in the early part of the century. The university's biological station also operates year-round; it is situated 25 miles farther up the coast, and is accessible only by water, by ice, or by trail. We arrived in Irkutsk on the evening of September 22 -­ Evgenii Dmitrovich Gusev and myself. Next morning snow was -4- falling and a stiff breeze blew down the Angara. While waiting for a ride to Listvyanka we had a look at the local museum -- with a small but good anthropological and ethnological section. When the Russians arrived there were, and still are, three peoples in the area. Most numerous were the northern or Buryat Mongols who herded sheep on the hilly grasslands lying on the southern, eastern and middle part of the western sides of Baikal. The lake's name is from their language, as is the tale of the shaman's· daughter. At the northern end of the lake were the Tungus or Evenki, a forest people mainly, whose bands extended north to the Arctic Ocean, as did their eastern neighbours the Yakuts. Both had a way of life similar to our woodland In9ian tribes, including vessels, teepees and even small canoes made of birch bark -- though the local tree produces a bark that is much inferior to ours. Both Buryats and Tungus qid some fishing in Baikal and elsewhere; gill-nets of tree fibers and of horse hair were on display. Earlier cultures have been excavated at various sites, extending back to the old stone age. At 2 p.m. the Director of the Limnological Institute picked us up and we drove down to the lake over the roiling wooded country that skirts the lateral bays of Irkutsk reservoir. In one of these a small ice-breaker was tied up to shore -- one of two used to ferry freight and passengers across the lake early in the century, now used as a base by a local athletic club. In spite of the fresh snow, the birches and aspens had scarcely begun to turn color, but larches were farther along. These plus pine and spruce made up the forest. -5- The Institute is now operated by the Siberian Section of the Academy of Sciences. Its laboratory building is situated not far from the lake shore. Behind and uphill are three apart­ ment buildings for staff, and a fourth nearly completed. The village nearby consists of only a few cottages, and.some staff members have homes 50 miles away in Irkutsk, commuting on week-· ends. A small-boat basin has been built 300 yards or so from the laboratory; the coast here is very exposed, but fortunately the prevailing winds are off shore. After a tour of the building and museum, about 5 o'clock we embarked on the flagship of the Institute's fleet, the G. Yu. Vereshchagin, named after a former Director. With us were Dr. Bons Konstant!novich Moskal~nko, head of the Laboratory of Ichthyology, and one of his staff, Igor Petrovich S_hum!lov. We ran north into a quartering offshore wind for about 4 hours. The plan had been to set a net that evening, but the wind was too strong, so we anchored. for the night~ Morning-found us in Bukhta Peschannaya (sandy bay), a tourist "base" with small cottages accommodating up to 500. It lies between two promontories the Bolshaya and Malenkaya Kolokolnya (big and little belfries). Across the lake the eastern mountains were silhouetted by the rising sun. About 6 o'clock we moved south a mile or so, near Baklannii Kamen (cormorant rock), a skiff was lowered and a bottom gill-net was set in about 50 metres of water. This was a monofilament nylon_ net about 150 metres long, 3 deep, and 40 mm bar mesh -- the legal minimum on Baikal. The crew predicted -6- gloomily that there would be few fish or none, that the site was not a good one, that we should be across the lake where the Selenga River enters, etc., etc. When the net was lifted with about 3 dozen nice omul after only half an hour, they still insisted this was a very poor catch, though to me it seemed excellent. The omul, a large cisco, is by far the most important food fish in the lake. The fish we got were immature specimens .12-14 inches long and 5-6 years old. (The matures are on their way to spawn in tributary rivers, especially the Selenga, which they ascend as far as Mongolia.) The incidental catch was one specimen each of the two principal pelagic sculpins: yellowfin and longfin. Once on board, the morning~ catch was hurried to the 11 11 galley, and we had omul for lunch (as fish soup-- ukho ), fried omul for dinner and again next morning. The ship returned~to Sandy Bay, and nearly everyone went ashore to (1) look for mushrooms; (2) inspect the Institute's 11 base11 there -- a good­ sized building with laboratories and living quarters; (3) climb the big belfry~ (4) walk along the frozen beach. A new tree occurred sparingly, a 5-needle pine that produces edible nuts, called cedar (kedr) in Russian.
Recommended publications
  • Cytochemical Features of Olfactory Receptor Cells in Benthic and Pelagic Sculpins (Cottoidei) from Lake Baikal
    Arch Biol Sci. 2016;68(2):345-353 DOI:10.2298/ABS150701026K CYTOCHEMICAL FEATURES OF OLFACTORY RECEPTOR CELLS IN BENTHIC AND PELAGIC SCULPINS (COTTOIDEI) FROM LAKE BAIKAL Igor V. Klimenkov1,2,*, Nikolay P. Sudakov2,3,4, Mikhail V. Pastukhov5 and Nikolay S. Kositsyn6 1 Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033 Russia 2 Irkutsk State University, 1 Karl Marx St., Irkutsk, 664003 Russia 3 Scientific Center for Reconstructive and Restorative Surgery, Siberian Branch, Russian Academy of Medical Sciences, 1 Bortsov Revolyutsii St., Irkutsk, 664003 Russia 4 Irkutsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Lermontov St. 134, Irkutsk, 664033, Russia 5 Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, 1a Favorsky St., Irkutsk, 664033 Russia 6 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova St., Moscow 117485 *Corresponding author: [email protected] Received: July 1, 2015; Revised: August 17, 2015; Accepted: October 6, 2015; Published online: March 21, 2016 Abstract: Electron and laser confocal microscopy were used to analyze the adaptive cytochemical features of the olfactory epithelium in three genetically close deep-water Cottoidei species endemic to Lake Baikal − golomyanka (Baikal oilfish) Comephorus baicalensis, longfin Baikal sculpin Cottocomephorus inermis and fat sculpin Batrachocottus nikolskii − whose foraging strategies are realized under different hydrostatic pressure regimes. Hypobaric hypoxia that developed in B. nikol- skii (a deep-water benthic species) upon delivery to the surface caused distinct destructive changes in cells of the olfactory epithelium. In C. baicalensis and C. inermis, whose foraging behavior involves daily vertical migrations between deep and shallow layers, these cells are characterized by a significantly higher structural and functional stability than in deep-water B.
    [Show full text]
  • Cottoidei: Cottidae) Necessitates Generic Realignment
    G C A T T A C G G C A T genes Article Genetic Evidence for a Mixed Composition of the Genus Myoxocephalus (Cottoidei: Cottidae) Necessitates Generic Realignment Evgeniy S. Balakirev 1,2,*, Alexandra Yu. Kravchenko 1,3 and Alexander A. Semenchenko 3 1 A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; [email protected] 2 School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russia 3 Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] * Correspondence: [email protected] Received: 7 July 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 0.12%) with Megalocottus platycephalus ± and, at the same time, a significantly higher divergence (7.89 0.16%) with the species of the genus ± Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me.
    [Show full text]
  • Lake Baikal Bibliography, 1989- 1999
    UC San Diego Bibliography Title Lake Baikal Bibliography, 1989- 1999 Permalink https://escholarship.org/uc/item/7dc9945d Author Limnological Institute of RAS SB Publication Date 1999-12-31 eScholarship.org Powered by the California Digital Library University of California Lake Baikal Bibliography, 1989- 1999 This is a bibliography of 839 papers published in English in 1989- 1999 by members of Limnological Institute of RAS SB and by their partners within the framework of the Baikal International Center for Ecological Research. Some of the titles are accompanied by abstracts. Coverage is on different aspects of Lake Baikal. Adov F., Takhteev V., Ropstorf P. Mollusks of Baikal-Lena nature reserve (northern Baikal). // World Congress of Malacology: Abstracts; Washington, D.C.: Unitas Malacologica; 1998: 6. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // VI International Conference on Copepoda: Abstracts; July 29-August 3, 1996; Oldenburg/Bremerhaven, Germany. Konstanz; 1996: 33. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // J. Mar. Syst.; 1998; 15: 351-357. Epischura baicalensis Sars is a dominant pelagic species of Lake Baikal zooplankton. This is endemic to Lake Baikal and inhabits the entire water column. It produces two generations per year: the winter - spring and the summer. These copepods develop under different ecological conditions and vary in the duration of life stages, reproduction time, maturation of sex products and adult males and females lifespan. The total life period of the animals from each generation is one year. One female can produce 10 egg sacks every 10 - 20 days during its life time.
    [Show full text]
  • Ultrahigh Foraging Rates of Baikal Seals Make Tiny Endemic Amphipods Profitable in Lake Baikal
    Ultrahigh foraging rates of Baikal seals make tiny endemic amphipods profitable in Lake Baikal Yuuki Y. Watanabea,b,1, Eugene A. Baranovc, and Nobuyuki Miyazakid aNational Institute of Polar Research, 190-8518 Tachikawa, Tokyo, Japan; bDepartment of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, 190-8518 Tachikawa, Tokyo, Japan; cBaikal Seal Aquarium, 664005 Irkutsk, Russia; and dAtmosphere and Ocean Research Institute, The University of Tokyo, 277-8564 Kashiwa, Chiba, Japan Edited by Mary E. Power, University of California, Berkeley, CA, and approved October 4, 2020 (received for review July 5, 2020) Understanding what, how, and how often apex predators hunt is Globally, amphipods are rarely targeted by aquatic mammals, ex- important due to their disproportionately large effects on ecosys- cept for a few filter-feeding baleen whales (11–13) and local pop- tems. In Lake Baikal with rich endemic fauna, Baikal seals appear to ulations of Arctic seals (14, 15), despite their high diversity and wide eat, in addition to fishes, a tiny (<0.1 g) endemic amphipod Macro- distribution. Amphipods are typically much smaller than Antarctic hectopus branickii (the world’s only freshwater planktonic species). krill, a preferred crustacean prey of many aquatic mammals, including Yet, its importance as prey to seals is unclear. Globally, amphipods pinnipeds (10). Gaining an energy surplus by hunting small amphi- are rarely targeted by single-prey feeding (i.e., nonfilter-feeding) pods is thus likely difficult for aquatic mammals, especially those that mammals, presumably due to their small size. If M. branickii is en- catch prey individually (i.e., pinnipeds and toothed whales).
    [Show full text]
  • Environmental Biology of Fishes
    Environmental Biology of Fishes Fatty acid composition in the white muscle of Cottoidei fishes of Lake Baikal reflects their habitat depth --Manuscript Draft-- Manuscript Number: EBFI-D-16-00347R2 Full Title: Fatty acid composition in the white muscle of Cottoidei fishes of Lake Baikal reflects their habitat depth Article Type: Original Paper Keywords: deep water fish; monounsaturated fatty acids; polyunsaturated fatty acids; temperature adaptation; taxonomy; trophic ecology; viscosity homeostasis; white muscle Corresponding Author: Reijo Käkelä Helsingin Yliopisto Helsinki, FINLAND Corresponding Author Secondary Information: Corresponding Author's Institution: Helsingin Yliopisto Corresponding Author's Secondary Institution: First Author: Larisa D. Radnaeva First Author Secondary Information: Order of Authors: Larisa D. Radnaeva Dmitry V. Popov Otto Grahl-Nielsen Igor V. Khanaev Selmeg V. Bazarsadueva Reijo Käkelä Order of Authors Secondary Information: Funding Information: Russian Fundamental Research Fund Dr Larisa D. Radnaeva (14-05-00516 А; 2014-2016) Abstract: Lake Baikal is a unique freshwater environment with maximum depths over 1600m. The high water pressure at the lakebed strengthens the solidifying effect of low water temperature on animal tissue lipids, and thus the effective temperatures in the depths of the lake equal subzero temperatures in shallow waters. Cottoidei species has colonized the different water layers of the lake, and developed different ecology and physiology reflected in their tissue biochemistry. We studied by gas chromatography the composition of fatty acids (FAs), largely responsible for tissue lipid physical properties, in the white muscle tissue of 13 species of the Cottoidei fish; 5 benthic abyssal, 6 benthic eurybathic and 2 benthopelagic species. The FA profiles reflected habitat depth.
    [Show full text]
  • Bioaccumulation of Mercury in the Pelagic Food Chain of the Lake Baikal
    Chemosphere 78 (2010) 1378–1384 Contents lists available at ScienceDirect Chemosphere journal homepage: www.elsevier.com/locate/chemosphere Bioaccumulation of mercury in the pelagic food chain of the Lake Baikal T. Ciesielski a,*, M.V. Pastukhov b, P. Szefer c, B.M. Jenssen a a Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway b Institute of Geochemistry, Siberian Branch of the Russian Academy of Science, Irkutsk 664033, Russia c Department of Food Sciences, Medical University of Gdan´sk, al. Gen. J. Hallera 107, 80-416 Gdan´sk, Poland article info abstract Article history: Mercury (Hg) concentrations were analyzed in the livers of Baikal seals and in plankton, zoobenthos and Received 23 May 2009 fish which constitute food items for the seals. Concentrations of Hg in the liver of Baikal seals were up to Received in revised form 26 December 2009 two orders of magnitude lower than those in seals inhabiting other lakes. The low levels of Hg are due to Accepted 28 December 2009 the low levels of the Hg in the fish from the family Comephoride, which reflect the very low concentra- Available online 1 February 2010 tions of Hg in Baikal water. The development stage (pups and adults) and the sex of the seals have sig- nificant influence on their hepatic Hg concentrations. The differences between Hg accumulation in Keywords: adult males, adult females and pups could be attributed to the reproductive cycle of the Baikal seals. Mercury In spite of low concentrations, Hg is characterized by high values of the concentration factor (CF) for Lake Baikal Trophic transfer the livers of for Baikal seals.
    [Show full text]
  • Abstract Book
    INTERACTIONS ON THE EDGE Abstract Book Abstract Book ASLO/SCL/NABS Acharya, K., Desert Research Institute, Las Vegas, USA, [email protected]; Agboola, J. I., Hokkaido University, Graduate School of Environmental Bukaveckas, P. A., Virginia Commonwealth University, Richmond, USA, Science, Sapporo, Japan, [email protected]; [email protected] Kudo, I., Hokkaido University, Graduate School of Environmental Science, UNIFORM VS. HETEROGENEOUS DIET: WHICH ONE DOES Sapporo, Japan; ZOOPLANKTON FAVOR? Uchimiya, M., Hokkaido University, Sapporo, Japan In nature, the zooplankton diet is most likely to be heterogeneous in nature SPATIO-TEMPORAL ANALYSES OF NUTRIENTS AND as it is composed of particles with different nutrient and biochemical PHYTOPLANKTON BIOMASS IN SUB-ARTIC COASTAL contents. Most research on zooplankton dietary implications is based on ENVIRONMENT OF JAPAN. treatments in which all food particles are treated equal in nutrient and The distribution of nutrients and phytoplankton biomass (Chla ) are reported biochemical contents. In this study, we compared several studies done and related to the oceanographic conditions in spring, summer and autumn, on various species of Daphnia (pulicaria, galeata, lumholtzi, magna) and and in-plume and out-plume regions on the Ishikari Bay, Japan. Nutrients Bosmina feeding on many diet types such as seston, algal amended seston, distribution in surface waters was characterized by the general tendency to uniform algae, and mixed algae of high and low qualities. In most cases, decrease from spring to autumn, and plume to out-plume region. In spring, juvenile growth rate and fecundity were measured but in some cases when the in-sea diffusion of nutrients was highest, total Chla ) biomass was long term growth and mortality were also measured.
    [Show full text]
  • Convergence in Diet and Morphology in Marine and Freshwater Cottoid Fishes Darby Finnegan1,2
    Convergence in Diet and Morphology in Marine and Freshwater Cottoid Fishes Darby Finnegan1,2 Blinks-NSF REU-BEACON 2017 Summer 2017 1Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250 2Department of Biology, Western Washington University, Bellingham, WA 98225 Contact information: Darby Finnegan Department of Biology Western Washington University 516 High Street Bellingham, WA 98225 [email protected] Keywords: Cottoid, marine-freshwater transitions, functional morphology, ecomorphology, adaptive optima, species diversification, adaptive radiation Abstract Habitat transitions provide opportunities for drastic changes in ecology, morphology, and behavior of organisms. The goal of this study is to determine whether the numerous evolutionary transitions from marine to freshwaters have altered the pattern and pace of morphological and lineage diversification within the sculpins (Cottoidea). The broad global distribution and wide-ranging ecology of sculpins make them an ideal study system in which to analyze marine invasions in northern latitudes. The sheer diversity of sculpins in isolated systems like Lake Baikal has led some to suggest these fishes (particularly Cottus) underwent an adaptive radiation upon their invasion of freshwaters in north Asia and Europe. Marine sculpins appear to be more diverse than freshwater sculpins, and while cottoids show signs of explosive radiation early in their evolutionary history, our study shows that unequal patterns of clade disparity among these lineages has led to constant rates of morphological and lineage diversification. Feeding morphology traits are highly conserved in cottoids, with both marine and freshwater species displaying similar morphologies despite widely-varying diets. While convergence in feeding morphology and dietary ecology is widespread in freshwater and marine cottoids, some specialist taxa, including planktivores and piscivores, show notable departures from the ancestral sculpin body plan.
    [Show full text]
  • Bayesian Node Dating Based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes
    Supporting Information Bayesian Node Dating based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes Michael Matschiner,1,2y Zuzana Musilov´a,2,3 Julia M. I. Barth,1 Zuzana Starostov´a,3 Walter Salzburger,1,2 Mike Steel,4 and Remco Bouckaert5,6y Addresses: 1Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway 2Zoological Institute, University of Basel, Basel, Switzerland 3Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic 4Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand 5Department of Computer Science, University of Auckland, Auckland, New Zealand 6Computational Evolution Group, University of Auckland, Auckland, New Zealand yCorresponding author: E-mail: [email protected], [email protected] 1 Supplementary Text 1 1 Supplementary Text Supplementary Text S1: Sequencing protocols. Mitochondrial genomes of 26 cichlid species were amplified by long-range PCR followed by the 454 pyrosequencing on a GS Roche Junior platform. The primers for long-range PCR were designed specifically in the mitogenomic regions with low interspecific variability. The whole mitogenome of most species was amplified as three fragments using the following primer sets: for the region between position 2 500 bp and 7 300 bp (of mitogenome starting with tRNA-Phe), we used forward primers ZM2500F (5'-ACG ACC TCG ATG TTG GAT CAG GAC ATC C-3'), L2508KAW (Kawaguchi et al. 2001) or S-LA-16SF (Miya & Nishida 2000) and reverse primer ZM7350R (5'-TTA AGG CGT GGT CGT GGA AGT GAA GAA G-3'). The region between 7 300 bp and 12 300 bp was amplified using primers ZM7300F (5'-GCA CAT CCC TCC CAA CTA GGW TTT CAA GAT GC-3') and ZM12300R (5'-TTG CAC CAA GAG TTT TTG GTT CCT AAG ACC-3').
    [Show full text]
  • Accumulation of the Persistent Organic Pollutants in the Food Chain of the Lake Baikal
    Transactions on Ecology and the Environment vol 26, © 1999 WIT Press, www.witpress.com, ISSN 1743-3541 Accumulation of the persistent organic pollutants in the food chain of the lake Baikal Olga V. Poliakova, Albert T. Lebedev, Nadezhda K.Karakhanova, Valery A.Shmorgunov, Anatoly V. Funtov, Valery S. Petrosyan Moscow State M V. Lomonosov University, Organic Chemistry Department, 119899 Moscow Russia E-mail: [email protected] Abstract Lake Baikal is the deepest and oldest freshwater lake in the world. It contains 20% of the world's resource of fresh water (23 000 km3), more than all five of the North American Great Lakes together. Its unusual size (700 km long,20-40 km wide and 1600m deep) makes evaluation of its state of health particularly difficult. In the last twenty years potential pollution of the lake has caused controversy not only in Russia but throughout the world. To study the present state of its contamination with organic pollutants the samples of water, snow, sediments, phytoplankton, zooplankton, sponges, plants, algae, fish, eggs of birds and blubber of seals were collected in 1997- 1998. In each case sample preparation was followed by the GC-MS analysis. Together with semivolatile priority pollutants on the US EPA list, the presence of organochlorine pesticides and polychlorinated biphenyls was checked. There was pronounced bioaccumulation of persistent organochlorine compounds along the trophic chain, leading to substantial residues of organochlorines in seals. An important point revealed involves the fact that the ratio of DDT to its metabolites is high enough to suggest there is a primary source of entry of this chemical into the lake even though its use is banned in Russia.
    [Show full text]
  • Ultrahigh Foraging Rates of Baikal Seals Make Tiny Endemic Amphipods Profitable in Lake Baikal
    Ultrahigh foraging rates of Baikal seals make tiny endemic amphipods profitable in Lake Baikal Yuuki Y. Watanabea,b,1, Eugene A. Baranovc, and Nobuyuki Miyazakid aNational Institute of Polar Research, 190-8518 Tachikawa, Tokyo, Japan; bDepartment of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, 190-8518 Tachikawa, Tokyo, Japan; cBaikal Seal Aquarium, 664005 Irkutsk, Russia; and dAtmosphere and Ocean Research Institute, The University of Tokyo, 277-8564 Kashiwa, Chiba, Japan Edited by Mary E. Power, University of California, Berkeley, CA, and approved October 4, 2020 (received for review July 5, 2020) Understanding what, how, and how often apex predators hunt is Globally, amphipods are rarely targeted by aquatic mammals, ex- important due to their disproportionately large effects on ecosys- cept for a few filter-feeding baleen whales (11–13) and local pop- tems. In Lake Baikal with rich endemic fauna, Baikal seals appear to ulations of Arctic seals (14, 15), despite their high diversity and wide eat, in addition to fishes, a tiny (<0.1 g) endemic amphipod Macro- distribution. Amphipods are typically much smaller than Antarctic hectopus branickii (the world’s only freshwater planktonic species). krill, a preferred crustacean prey of many aquatic mammals, including Yet, its importance as prey to seals is unclear. Globally, amphipods pinnipeds (10). Gaining an energy surplus by hunting small amphi- are rarely targeted by single-prey feeding (i.e., nonfilter-feeding) pods is thus likely difficult for aquatic mammals, especially those that mammals, presumably due to their small size. If M. branickii is en- catch prey individually (i.e., pinnipeds and toothed whales).
    [Show full text]
  • Oceanological and Hydrobiological Studies
    Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology Volume 44, Issue 1, March 2015 ISSN 1730-413X pages (68-73) eISSN 1897-3191 Contracaecum spp. from endemic Baikal fishes: the Baikal yellowfin Cottocomephorus grewingkii (Dybowski, 1874) and the longfin Baikal sculpin Cottocomephorus inermis (Yakovlev, 1890) by Abstract 1 Olga Rusinek All the nematodes found in body cavities of the examined 2 endemic Baikal fishes: 88 Baikal yellowfin Cottocomephorus Marek Kulikowski grewingkii (Dybowski, 1874) and 35 longfin Baikal sculpin Katarzyna Najda2 Cottocomephorus inermis (Yakovlev, 1890) were identified as 2,* Contracaecum osculatum baicalensis (Mozgovoi and Ryjikov, Jerzy Rokicki 1950) L3 larvae. The prevalence, mean intensity, intensity range and abundance of the nematodes in C. grewingkii were 37.5%, 2.55, 1-31, and 0.96, respectively, the corresponding values in C. inermis were 60.0%, 2.43, 1-10, and 1.46. The infestation level in C. grewingkii was significantly higher than DOI: 10.1515/ohs-2015-0007 in C. inermis (Mann-Whitney U-test, p<0.02). The number of parasites was found to increase with the fish length. Although Category: Original research paper in both and C. inermis, the anisakids were more frequent Received: September 29, 2014 in males (prevalence of 52.17 and 67.76%, respectively) than Accepted: November 19, 2014 in females (prevalence of 35.39 and 42.86%, respectively), differences between the sexes in the infestation level in the two species were not significant (Mann-Whitney U-test, P= 0.09 and P=0.23, respectively). The molecular method applied (PCF-RFLP) allows to identify all the nematodes in 1 Baikal Museum of Irkutsk Scientific Center both examined fish species as C.
    [Show full text]