Commission 27 of the Iau Information Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
061208A0.Pdf
NATURE l DECEl\IBEK 28. 1899 J 1 _;. wh. 1m. of Algol 1$ Persei). followed ll\' no loss of accuracy, and thereft•re their puhlicatio:I 1:; . \'enus. Illuminated portion of <lise = o·873· is In :lccordance with th<: decisions of the Con l(r. 6h. sorn. :'llinimum nf Algol (8 . ference of Superintendents of Ephemeride;; held at _l'aris in 1(). t7h. 17m. to 17h. som. OccultatiOn of a Cancn 18<)6, I he constants of aberration, precession, and nutatron have (mag. 4'3) by the moon. _ . lreen altered from the commencement of 1901' ; but, for the con 20 12h. 46m. to 13h. 46m. Occuliatwn of IL\.C. Yenience of oh<en·ers Hill desirint-: to use the Stnl\·e-l'cter's 4006 (mag. 5 71 by the moon. constants, both been inchulcd in the present tables. 21. 1 1 h. 22m. to 12h. 26m. OccultatH>n of '/ "l'Ot•t:I.AR ,. FOR DECE:l!IIER. · -The issue of \"irnini< (mog. 57) by the moon. l'opu!ar Ash·oiiOIII)' for this month contain>, among much -J? ' ISh 3sm. to I6h. 45•11 . Occuliation cf H . .-\.C. generally interesting matter, two useful :lrticlcs by _Profs. II. C. 4722 mag. 5 ·s). \Yilsun and \V. II. Pickering. The former descnbcs a photo 2(}, 1h. Conjunction of Jupiter and the moon graph of the nebula of Andromeda obtained by at Coodsell (Jupiler z ' 3' i'l.). Observatory, the 8-inch Clarke refractor, wrth an exposure I ;h 40n1. of Jupiter'.; Sat. Ill. of twell'e hours given on three nights. -
Commission 27 of the Iau Information Bulletin
COMMISSION 27 OF THE I.A.U. INFORMATION BULLETIN ON VARIABLE STARS Nos. 2401 - 2500 1983 September - 1984 March EDITORS: B. SZEIDL AND L. SZABADOS, KONKOLY OBSERVATORY 1525 BUDAPEST, Box 67, HUNGARY HU ISSN 0374-0676 CONTENTS 2401 A POSSIBLE CATACLYSMIC VARIABLE IN CANCER Masaaki Huruhata 20 September 1983 2402 A NEW RR-TYPE VARIABLE IN LEO Masaaki Huruhata 20 September 1983 2403 ON THE DELTA SCUTI STAR BD +43d1894 A. Yamasaki, A. Okazaki, M. Kitamura 23 September 1983 2404 IQ Vel: IMPROVED LIGHT-CURVE PARAMETERS L. Kohoutek 26 September 1983 2405 FLARE ACTIVITY OF EPSILON AURIGAE? I.-S. Nha, S.J. Lee 28 September 1983 2406 PHOTOELECTRIC OBSERVATIONS OF 20 CVn Y.W. Chun, Y.S. Lee, I.-S. Nha 30 September 1983 2407 MINIMUM TIMES OF THE ECLIPSING VARIABLES AH Cep AND IU Aur Pavel Mayer, J. Tremko 4 October 1983 2408 PHOTOELECTRIC OBSERVATIONS OF THE FLARE STAR EV Lac IN 1980 G. Asteriadis, S. Avgoloupis, L.N. Mavridis, P. Varvoglis 6 October 1983 2409 HD 37824: A NEW VARIABLE STAR Douglas S. Hall, G.W. Henry, H. Louth, T.R. Renner 10 October 1983 2410 ON THE PERIOD OF BW VULPECULAE E. Szuszkiewicz, S. Ratajczyk 12 October 1983 2411 THE UNIQUE DOUBLE-MODE CEPHEID CO Aur E. Antonello, L. Mantegazza 14 October 1983 2412 FLARE STARS IN TAURUS A.S. Hojaev 14 October 1983 2413 BVRI PHOTOMETRY OF THE ECLIPSING BINARY QX Cas Thomas J. Moffett, T.G. Barnes, III 17 October 1983 2414 THE ABSOLUTE MAGNITUDE OF AZ CANCRI William P. Bidelman, D. Hoffleit 17 October 1983 2415 NEW DATA ABOUT THE APSIDAL MOTION IN THE SYSTEM OF RU MONOCEROTIS D.Ya. -
The Axis Is Nearly Perpendicular to the Orbital Plane ; (2) the Sense Is the Same As That of the Revolution ; (3) the Period Is Longer Than That of the Revolution
No. 7.] 247 75. An Explanation of the Periodic Variable Stars. By Kiyotsugu HIRAYAMA, M.I.A. Astronomical Observatory, Azabu, Tokyo. (Comm. July 13, 1931.) The binary hypotheses, initially proposed to explain the periodic variable stars, were defective. The pulsation theory seemed more promising ; but even this is disappointing in explaining the varieties and the minor details, of the phenomena. The following explanation ,1) although qualitative, seems satisfactory for those. The hypothesis is based on the capture theory of the stars,2) recently proposed by the writer, and is inconsistent with the fission theory. Cepheid Variables. The Cepheid variable is supposed to be a contact system of a giant star and a dwarf star which is almost dark. The relative orbit is supposed to be nearly circular, in accordance with the general tendency of the binary stars. For the rotation of the primary, the following qualifications are made : (1) the axis is nearly perpendicular to the orbital plane ; (2) the sense is the same as that of the revolution ; (3) the period is longer than that of the revolution. No assumption is made for the rotation of the companion, although the libration is very probable. Taking as a model, the stars of spherical form of the masses 10 and 1 solar units, and the period of revolution, 0.02 year, the mean distance comes out as 0.16 astronomical unit, and the velocitiesrelative to the centre of gravity, as 22.3 and 223.5 km sec-1. As a consequence of the relative motion of the companion, a trail, or an abrasion, so to speak, is left on the surface of the primary, which may be recovered as the time goes on. -
Variable Stars Observer Bulletin
Amateurs' Guide to Variable Stars September-October 2013 | Issue #2 Variable Stars Observer Bulletin ISSN 2309-5539 Twenty new W Ursae Majoris-type eclipsing binaries from the Catalina Sky Survey Details for 20 new WUMa systems are presented, along with a preliminary The FU Orionis phenomenon model of the FU Orionis stars are pre-main-sequence totally eclipsing eruptive variables which appear to be a system GSC stage in the development of T Tauri 03090-00153. stars. Image: FU Orionis. Credit: ESO NSVS 5860878 = Dauban V 171 Carbon in the sky: A new Mira variable in Cygnus a few remarkable carbon stars The list of the most interesting and bright carbon stars for northern observers is presented. Right: TT Cygni. A carbon star. Credit & Copyright: H.Olofsson (Stockholm Nova Observatory) et al. Delphini 2013 Nova has reached magnitude 4.3 visual The "Heavenly Owl" on August 16 observatory: seeing above the Black Sea waterfront VS-COMPAS Project: variable stars research and data mining. More at http://vs-compas.belastro.net Variable Stars Observer Bulletin Amateurs' Guide to Variable Stars September-October 2013 | Issue #2 C O N T E N T S 04 NSVS 5860878 = Dauban V 171: a new Mira variable in Cygnus by Ivan Adamin, Siarhey Hadon A new Mira variable in the constellation of Cygnus is presented. The variability of the NSVS 5860878 source was detected in January of 2012. Lately, the object was identified as the Dauban V171. A revision is submitted to the VSX. 06 Twenty new W Ursae Majoris-type eclipsing binaries Credit: Justin Ng from the Catalina Sky Survey by Stefan Hümmerich, Klaus Bernhard, Gregor Srdoc 16 Nova Delphini 2013: a naked-eye visible flare in A short overview of eclipsing binary northern skies stars and their traditional by Andrey Prokopovich classification scheme is given, which concentrates on W Ursae Majoris On August 14, 2013 a new bright star (WUMa)-type systems. -
International Comet Quarterly
International Comet Quarterly Links International Comet Quarterly ICQ: Recommended (and condemned) sources for stellar magnitudes Cometary Science Center Comet magnitudes Below is a list that observers may use to evaluate whether the source(s) that they are Central Bureau for Astro. Tel. contemplating using for visual or V stellar magnitudes are recommended or not. Unfortunately, many errors have been found over the years in the both the individual variable-star charts of Minor Planet Center the AAVSO (ICQ code AC) and the AAVSO Variable Star Atlas (code AA); those variable-star EPS/Harvard charts were designed for the purpose of tracking the relative variation in brightness of individual variable stars, and they frequently are not adequately aligned with the proper magnitude scale. The new Hipparcos/Tycho catalogues have had new codes implemented (see below). New additions (and changes in categories) will be made to the following list as new information reaches the ICQ. MAGNITUDE-REFERENCE KEY Second-draft recommendation list, 1997 Dec. 1. Updated 2007 April 20 and 2017 Oct. 4. NOTE: For visual magnitude estimation of comets, NEVER USE SOURCES for which the available star magnitudes are only brighter than the comet! For example, the SAO Star Catalog is very poor for magnitudes fainter than 9.0, and should NEVER be used on comets fainter than mag 9.5. The Tycho catalogue should not be used for comets fainter than mag 10.5. (Even CCD photometrists should be wary of using bright stars for very faint comets; it is always best to use comparison stars within a few magnitudes of the comet when doing CCD photometry.) NOTE: It is highly recommended that users of variable-star charts also specify (in descriptive notes to accompany the tabulated data) the specific chart(s) used for each observation; this information will be published in the ICQ. -
Highlights of Discoveries for $\Delta $ Scuti Variable Stars from the Kepler
Highlights of Discoveries for δ Scuti Variable Stars from the Kepler Era Joyce Ann Guzik1,∗ 1Los Alamos National Laboratory, Los Alamos, NM 87545 USA Correspondence*: Joyce Ann Guzik [email protected] ABSTRACT The NASA Kepler and follow-on K2 mission (2009-2018) left a legacy of data and discoveries, finding thousands of exoplanets, and also obtaining high-precision long time-series data for hundreds of thousands of stars, including many types of pulsating variables. Here we highlight a few of the ongoing discoveries from Kepler data on δ Scuti pulsating variables, which are core hydrogen-burning stars of about twice the mass of the Sun. We discuss many unsolved problems surrounding the properties of the variability in these stars, and the progress enabled by Kepler data in using pulsations to infer their interior structure, a field of research known as asteroseismology. Keywords: Stars: δ Scuti, Stars: γ Doradus, NASA Kepler Mission, asteroseismology, stellar pulsation 1 INTRODUCTION The long time-series, high-cadence, high-precision photometric observations of the NASA Kepler (2009- 2013) [Borucki et al., 2010; Gilliland et al., 2010; Koch et al., 2010] and follow-on K2 (2014-2018) [Howell et al., 2014] missions have revolutionized the study of stellar variability. The amount and quality of data provided by Kepler is nearly overwhelming, and will motivate follow-on observations and generate new discoveries for decades to come. Here we review some highlights of discoveries for δ Scuti (abbreviated as δ Sct) variable stars from the Kepler mission. The δ Sct variables are pre-main-sequence, main-sequence (core hydrogen-burning), or post-main-sequence (undergoing core contraction after core hydrogen burning, and beginning shell hydrogen burning) stars with spectral types A through mid-F, and masses around 2 solar masses. -
Abd Al-Rahman Al-Sufi and His Book of the Fixed Stars: a Journey of Re-Discovery
ResearchOnline@JCU This file is part of the following reference: Hafez, Ihsan (2010) Abd al-Rahman al-Sufi and his book of the fixed stars: a journey of re-discovery. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/28854/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/28854/ 5.1 Extant Manuscripts of al-Ṣūfī’s Book Al-Ṣūfī’s ‘Book of the Fixed Stars’ dating from around A.D. 964, is one of the most important medieval Arabic treatises on astronomy. This major work contains an extensive star catalogue, which lists star co-ordinates and magnitude estimates, as well as detailed star charts. Other topics include descriptions of nebulae and Arabic folk astronomy. As I mentioned before, al-Ṣūfī’s work was first translated into Persian by al-Ṭūsī. It was also translated into Spanish in the 13th century during the reign of King Alfonso X. The introductory chapter of al-Ṣūfī’s work was first translated into French by J.J.A. Caussin de Parceval in 1831. However in 1874 it was entirely translated into French again by Hans Karl Frederik Schjellerup, whose work became the main reference used by most modern astronomical historians. In 1956 al-Ṣūfī’s Book of the fixed stars was printed in its original Arabic language in Hyderabad (India) by Dārat al-Ma‘aref al-‘Uthmānīa. -
Variable Stars Observer Bulletin 15.000 – 30.000
the appropriate amount of shots with the same comparison stars and their brightness in the range exposures. Making the Flat files is a little more the data frames are. Amateurs' Guide to Variable Stars September-October 2013 | Issue #2 complicated. Ideally, they are easy to get on evening or predawn twilight sky. You need to With a series of photometric observations, we can choose the exposure to get a ¼ - ½ of the value of build a light curve, find the period of a variable complete saturation of the pixel. For example, full star, other parameters, depending on the saturation for 16 bit camera is 65535. The value of variability type. a pixel in the Flat file should be in the range of Variable Stars Observer Bulletin 15.000 – 30.000. I use 20.000. There are lots of software to make the analysis of the photometric data. A good example is a ISSN 2309-5539 Another way of obtaining the Flat files is to use the software package created by Andrey Prokopovich so-called flat-box. I use a white screen which is and Ivan Adamin (the VS-COMPAS project core attached to the dome. Am bringing him a team). There are desktop and web versions Twenty new W Ursae Majoris-type eclipsing telescope and the illuminating light bulb. For more available. It is a powerful software that allows you binaries from the Catalina Sky Survey scattered light, the telescope tube can be covered to build the light curves, search for possible with a white cloth. Flat files must be taken periods, combine data from a number of separately for each filter. -
Scientific Papers of Lizhi Fang Chinese-English Bilingual Subject List
Scientific Papers of Lizhi Fang Chinese-English Bilingual Subject List 方勵之先生科學論文中外對照目錄* 編者1:楊建 王樹軍 漢譯審校者1:馮瓏瓏 1961 1. 用變形的傳播函數計算核子電荷半徑,王允然(方勵之),《物理學報》,1961, 17(1):57-60 . Calculation of nucleon electric radius by corrected propagation function, Y.R. Wang (i.e. L.Z. Fang), Acta Physica Sinica(ISSN 1000-3290), 1961, 17, 57 1963 2. 鐵磁體中缺陷對自旋波的影響,李蔭遠,方勵之,顧世傑,《物理學報》,1963, 19 (9):599-612 . Effect of imperfections on spin waves in ferromagnetic, Y.Y. Li, L.Z. Fang and S.J. Gu, Acta Physica Sinica (ISSN 1000-3290), 1963, 19, 599 3. 有缺陷鐵磁體的中子非彈性散射,方勵之,顧世傑,《物理學報》, 1963, 19(10):673-681 . Inelastic scattering of neutrons in ferromagnetics with imperfections, L. Z. Fang and S.J. Gu, Acta Physica Sinica (ISSN 1000-3290), 1963, 19, 673 1964 4. 論三能級變頻器,方勵之,李鐵城,《物理學報》,1964, 20(12):1199-1209 . Theory of three-level frequency converters, L.Z. Fang and T.C. Li, Acta Physica Sinica (ISSN 1000-3290), 1964, 20, 1199 5. 分子在失調腔中的輻射行為及雙腔Maser的振蕩現象,李鐵城,方勵之,《物理學報》,1964, 20(8):753-760 . On the radiation of molecules in detuned cavity and the phenomena of double-cavity masers, T.C. Li and L.Z. Fang, Acta Physica Sinica (ISSN 1000-3290), 1964, 20, 753 6. 金屬表面反射光中的諧波,方勵之,《物理學報》,1964, 20(8):817-818 . Harmonic waves from the reflection at metallic surface, L.Z. Fang, Acta Physica Sinica (ISSN 1000-3290), 1964, 20, 817 7. 關於光激射器的線寬,方勵之,羅一祖,《物理學報》,1964, 20(11):1079-1089 . On the linewidth of lasers, L.Z. Fang and Y.Z. Luo, Acta Physica Sinica (ISSN 1000-3290), 1964, 20, 1079 1965 1 編校者簡介—— 楊 建:原中國科學院南京紫金山天文台專家,曾任江蘇省天文學會副理事長,現定居於澳大利亞; 王樹軍:1980年代在中國科大师从方勵之研習近代物理學史,現在美國威州Merge Healthcare從事軟件開發; 馮瓏瓏:1980年代在中國科大師從方勵之研習天體物理學,現為中國科學院南京紫金山天文台研究員。 8. -
Milan Dimitrijevic Avgust.Qxd
1. M. Platiša, M. Popović, M. Dimitrijević, N. Konjević: 1975, Z. Fur Natur- forsch. 30a, 212 [A 1].* 1. Griem, H. R.: 1975, Stark Broadening, Adv. Atom. Molec. Phys. 11, 331. 2. Platiša, M., Popović, M. V., Konjević, N.: 1975, Stark broadening of O II and O III lines, Astron. Astrophys. 45, 325. 3. Konjević, N., Wiese, W. L.: 1976, Experimental Stark widths and shifts for non-hydrogenic spectral lines of ionized atoms, J. Phys. Chem. Ref. Data 5, 259. 4. Hey, J. D.: 1977, On the Stark broadening of isolated lines of F (II) and Cl (III) by plasmas, JQSRT 18, 649. 5. Hey, J. D.: 1977, Estimates of Stark broadening of some Ar III and Ar IV lines, JQSRT 17, 729. 6. Hey, J. D.: Breger, P.: 1980, Stark broadening of isolated lines emitted by singly - ionized tin, JQSRT 23, 311. 7. Hey, J. D.: Breger, P.: 1981, Stark broadening of isolated ion lines by plas- mas: Application of theory, in Spectral Line Shapes I, ed. B. Wende, W. de Gruyter, 201. 8. Сыркин, М. И.: 1981, Расчеты электронного уширения спектральных линий в теории оптических свойств плазмы, Опт. Спектроск. 51, 778. 9. Wiese, W. L., Konjević, N.: 1982, Regularities and similarities in plasma broadened spectral line widths (Stark widths), JQSRT 28, 185. 10. Konjević, N., Pittman, T. P.: 1986, Stark broadening of spectral lines of ho- mologous, doubly ionized inert gases, JQSRT 35, 473. 11. Konjević, N., Pittman, T. P.: 1987, Stark broadening of spectral lines of ho- mologous, doubly - ionized inert gases, JQSRT 37, 311. 12. Бабин, С. -
Incidental Tables
Sp.-V/AQuan/1999/10/27:16:16 Page 667 Chapter 27 Incidental Tables Alan D. Fiala, William F. Van Altena, Stephen T. Ridgway, and Roger W. Sinnott 27.1 The Julian Date ...................... 667 27.2 Standard Epochs ...................... 668 27.3 Reduction for Precession ................. 669 27.4 Solar Coordinates and Related Quantities ....... 670 27.5 Constellations ....................... 672 27.6 The Messier Objects .................... 674 27.7 Astrometry ......................... 677 27.8 Optical and Infrared Interferometry ........... 687 27.9 The World’s Largest Optical Telescopes ........ 689 27.1 THE JULIAN DATE by A.D. Fiala The Julian Day Number (JD) is a sequential count that begins at Noon 1 Jan. 4713 B.C. Julian Calendar. 27.1.1 Julian Dates of Specific Years Noon 1 Jan. 4713 B.C. = JD 0.0 Noon 1 Jan. 1 B.C. = Noon 1 Jan. 0 A.D. = JD 172 1058.0 Noon 1 Jan. 1 A.D. = JD 172 1424.0 A Modified Julian Day (MJD) is defined as JD − 240 0000.5. Table 27.1 gives the Julian Day of some centennial and decennial dates in the Gregorian Calendar. 667 Sp.-V/AQuan/1999/10/27:16:16 Page 668 668 / 27 INCIDENTAL TABLES Table 27.1. Julian date of selected years in the Gregorian calendar [1, 2]. Julian day at noon (UT) on 0 January, Gregorian calendar Jan. 0.5 JD Jan. 0.5 JD Jan. 0.5 JD Jan. 0.5 JD 1500 226 8923 1910 241 8672 1960 243 6934 2010 245 5197 1600 230 5447 1920 242 2324 1970 244 0587 2020 245 8849 1700 234 1972 1930 242 5977 1980 244 4239 2030 246 2502 1800 237 8496 1940 242 9629 1990 244 7892 2040 246 6154 1900 241 5020 1950 243 3282 2000 245 1544 2050 246 9807 Century years evenly divisible by 400 (e.g., 1600, 2000) are leap years. -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,