Evidence for Presence of Female Produced Pheromone Components in Male Scent Brush Extract of Castor Semi-Looper Moth Achaea Janata L

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for Presence of Female Produced Pheromone Components in Male Scent Brush Extract of Castor Semi-Looper Moth Achaea Janata L Indian Journal of Experimental Biology Vol. 43, April 2005, pp. 335-341 Evidence for presence of female produced pheromone components in male scent brush extract of castor semi-looper moth Achaea janata L. K N Jyothi, A L Prasuna & A R Prasad Pheromone Laboratory, Organic Division I, Indian Institute of Chemical Technology, Tarnaka , Hyderabad 500 007, India. Received 4 October 2004; revised 3 January 2005 Hexane extract of male terminalia (along with scent brushes) of castor semi-looper moth, Achaea janata L, elicited significant olfactory responses in both male and female insects by electroantennogram recording technique. However, male extract in the wind tunnel evoked noticeable behaviour responses in the female insects only. Orientation response of the males to the male extract was not evident in wind tunnel experiments. Two electrophysiologically-active compounds were identified from the male extract. Based on GC retention times and mi'!ss spectrometry the two compounds were confirmed as (Z, Z)-9, 12- octadecadienal and (Z, Z, Z)-3, 6, 9-heneicosatriene. These two compounds are also constituents of female produced four­ component blend of A. janata. Keywords: Achaea janata, Electroantennogram, , Gas chromatography, (Z, Z, Z)-3, 6, 9-Heneicosatriene Male brush, (Z, Z)-9, 12-0ctadecadienal,Wind tunnel. Achaea janata L, Castor semi-looper (Lepidoptera: Electrophysiological studies of olfactory Noctuidae) moth is an important pest of castor, sensitivities to pheromones in insects are mostly Ricinus communis in India. Both caterpillars and adult concentrated on antennal receptor neurons of males, moths cause the damage. In severe infestation, larvae particularly on their sensitivity to female produced consume entire foliage leaving only the midribs and male attracting pheromones. Pheromones produced by stalks. Excessive loss of foliage causes reduction in males and their role in close range complex sexual 5 seed yield. Adults are fruit sucking moths and cause interplay have been relatively neglected . serious damage to citrus crop. Males of many species of Lepidoptera have scent Persoons et aI. l identified the sex pheromone organs located on the abdomen, thorax, legs and system in female semi-looper moth as a four­ wings, which vary from simple scales and hair tufts to component blend consisting of--{I) Heneicosane; (II) complex eversible structures. The noctuid male scent (Z, Z)-6, 9-Heneicosadiene; (III) (Z, Z, Z)-3, 6, 9- organs commonly referred to as hair pencils typically Heneicosatriene and (IV) (Z, Z)-9, 12-0ctadecadienal constitute a pair of brushes, scent glands and storage 6 in the ratio of l.0: l.0: 60 -70: l.0, respectively. pockets • The male scent brush apparatus of Ajanata Generally there is overwhelming behavioural and also possesses typical Noctuid morphology. The electrophysiological evidence that female moths are brushes extend and spread to a fan shape when a male non-responsive to the sex pheromones which they approaches a calling female. Sehgal et al. 7,8 have 2 produce . However, our electroantennogram studies described the morphological details of the external indicated that females are stimulated not only by the genitalia of Ajanata in detail. Although, volatile total pheromone blend, but also by each of the chemicals from males of some of the noctuid species individual pheromone components (Unpublished have been identified and biosynthetic pathways for observations, - Jyothi K N). Similar responsiveness of some of the compounds were known, the actual role 9 females to female produced pheromone has also been of most of the compounds is not clearly elucidated . demonstrated in Trichoplusia ni 2,3 and Choristonuera Aim of the present investigation was--{l) to 4 jumiferana . ascertain the electrophysiological and behavioural function of the hairbrush extract against both males and females of Ajanata; and (2) to isolate and Correspondent author: Tel. No. 27193136 E-maillO: [email protected] identify the chemical nature of secretions from male nCT communication No. 041219 abdominal tip extract (along with brushes) which may 336 INDIAN J EXP BIOL, APRIL 2005 possibly explain the reason for female-female capillary column HP-5 MS (0.25mm id; 30 m length attraction. at 0.25 f.Lm film thickness) was used. Ionization voltage was 70 e V and the temperature of the ion Materials and Methods source and the interface was 2300 and 2800 C, Insect culture--Culture of Ajanata was maintained respectively. Carrier gas was helium at a constant in the laboratory in an environmental chamber at flow rate of 1.2ml/min. The extract was analyzed 27°± 1°C, 70 % RH and 10: 14 dark/light under reverse using the same temperature program as described photoperiod conditions. The larvae were fed on fresh above for Gc. The identity of the various peaks was castor leaves until pupation. Pupae were segregated confirmed by comparing the unknowns with both the sex wise (based on the morphology of 8-10 abdominal standard spectra library and authentic samples (gift segments) and maintained in cubical wooden adult from TNO, The Netherlands). cages (36 x 36cm x 36cm). The moths after emergence were fed on 10 % honey solution soaked Chemicals on cotton pads in petri dishes. For identification and electrophysiological work, Male extracts (abdominal terminalia along with two compounds-(Z,Z)-9,12 octadecadienal and brushes) preparation-For extract preparation, 3-5 (Z,Z,Z)-3,6,9-heneicosatriene were obtained from day old male moths were utilized. Male terminalia Organic Division, nCT. Detailed synthesis procedures were everted by gently pressunzmg terminal are described elsewhere 1 I. abdominal segments during the period of mating activity 10 . With the help of micro scissors they were Electroantennogram recording technique (EAG) quickly excised into vials containing n-hexane. The The EAG technique was employed to study the hexane extracts were pooled and stored at -300 C sensitivity/selectivity of both male and female until further use. The extracts were filtered through a antennae of Ajanata to the crude male scent brush short silica column and were concentrated at room extract as well as the synthetic components. An EAG temperature with a stream of nitrogen for chemical profile indicated the senSItIvIty and relative analysis, electrophysiological and wind tunnel abundance of olfactory receptor neurons present on bioassay studies. the antenna for a particular compound tested. For electrophysiological recordings, Syntech EAG Analytical procedures (Syntech, Hilversum, The Netherlands) was Gas chromatography (GC)-Gas chromatography employed. The isolated antennae of different ages of of male extract and standard compounds were males and females Ajanata were individually performed on a Carlo Erba 5300 gas chromatograph mounted onto a metal electrode holder (stainless steel) fitted with a flame ionization detector and split with the help of an electrically conductive gel. The injector. Separations were performed on a 2m x 2.5 antenna was continuously flushed with charcoal mm id glass column packed with 3% CPSil-5 filtered and moistened air stream through a stainless chromo sorb phase (100-120 mesh). A temperature tube (8mm id) ending 2 cm before the antennal programme of 50°C (2min delay) increased to final preparation. The EAG signals were amplified and temperature of 260°C (5 min delay) at the rate of recorded with a data acquisition controller and 10°C/min was followed. Nitrogen was used as the software (Syntech, The Netherlands). carrier gas with a column head pressure of 100 kPa. The test compound (5 male equivalents of male Injector and detector temperatures were set at 275°C. extract/5-100 f.L g of synthetic compound) was spread The column effluent was split to send 1/6th of the on a filter paper. After complete evaporation of the extract to FlD detector and 5/6th to the glass capillary solvent, the filter paper strip was inserted into a embedded in dry ice for collection of volatiles ( a Pasteur pipette. Stimuli were provided by connecting custom made device of TNO, The Netherlands gifted the pipette for 300 ms into the air stream flushing to nCT). Two min fractions were collected in chilled over the antenna. An equal volume of solvent alone capillaries and subsequently bio-assayed by EAG (hexane) spread on the filter paper served as the technique. control. Control stimulation was made at the Gas chromatography-mass spectrometry (GC-MS) beginning and after every 2-3 EAG recordings. EAG -The extract was subjected to GC-MS instrument for responses were evaluated by measuring the maximum analysis. Agilent 6890 GC with 5973 NMSD with amplitude of depolarization triggered by stimuli. At JYOTHI et al.: PRESENCE OF FEMALE PHAROMORE COMPONENTS IN MALE 337 least 30 sec was allowed between two continuous Two kinds of stimuli were used in the wind tunnel. stimuli for recovery of the antenna. _EAG responses In the first test, the orientation behaviour of males and were recorded from five males and five females females separately towards the crude extract (five moths individually to the extract/synthetic compound. male equivalents) was evaluated. Filter paper loaded The EAG data in Figs. 2-4, represent corrected EAG with same volume of hexane served as control. In the figures (male extract/ synthetic compound minus second test, the behavioural response of compounds control). The EAG responses were subjected to identified from the male extract i.e., [Z, Z, Z)-3, 6, 9- analysis of variance (ANOV A). heneicosatriene and (Z, Z) - 9, 12-octadecadienal were evaluated. The test compound (100 I1g of each) Wind-tunnel bioassay dissolved in n-hexane was used as the stimulus. An indoor cylindrical wind tunnel (30 cm diam x 2 Numbers of males exhibiting different levels Of m) was used to test the biological activity of crude upwind flight behaviour in the tunnel were counted. extract/synthetic standards 12. The tunnel was housed All the experiments were performed in triplicate. in a room with temperature and relative humidity controls and an exhaust system from the tunnel to the Results outside of the room.
Recommended publications
  • Saltmarsh Caterpillar, Estigmene Acrea (Drury) (Insecta: Lepidoptera: Arctiidae)1 John L
    EENY218 Saltmarsh Caterpillar, Estigmene acrea (Drury) (Insecta: Lepidoptera: Arctiidae)1 John L. Capinera2 Distribution The saltmarsh caterpillar, Estigmene acrea (Drury), is a native insect found throughout the United States. Its distribution extends to Central America, and in Canada it has damaged crops in Ontario and Quebec. As a pest, it is most common in the southern United States, particularly the southwest. Description and Life Cycle A generation can be completed in 35 to 40 days under ideal conditions, but most reports from the field suggest about six weeks between generations. The number of generations per year is estimated at one in the northern states to three Figure 1. Adult saltmarsh caterpillars, Estigmene acrea (Drury). to four in the south. Overwintering reportedly occurs in Credits: John L. Capinera, UF/IFAS the mature larval stage, with pupation early in the spring. Saltmarsh caterpillars usually are infrequent early in the season, but may attain high numbers by autumn. Eggs The eggs are nearly spherical in shape, and measure about 0.6 mm in diameter. Initially they are yellow, but soon become grayish in color. Females commonly produce 400 to 1000 eggs in one or more clusters. It is not unusual to find a single egg cluster containing 1200 eggs. Eggs hatch in four to five days. Figure 2. Eggs of the saltmarsh caterpillar, Estigmene acrea (Drury). Credits: John L. Capinera, UF/IFAS 1. This document is EENY218, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date July 2001. Revised March 2013. Reviewed July 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
    [Show full text]
  • Preference for High Concentrations of Plant Pyrrolizidine Alkaloids in the Specialist Arctiid Moth Utetheisa Ornatrix Depends on Previous Experience
    Arthropod-Plant Interactions (2013) 7:169–175 DOI 10.1007/s11829-012-9232-1 ORIGINAL PAPER Preference for high concentrations of plant pyrrolizidine alkaloids in the specialist arctiid moth Utetheisa ornatrix depends on previous experience Adam Hoina • Carlos Henrique Zanini Martins • Jose´ Roberto Trigo • Rodrigo Cogni Received: 12 October 2012 / Accepted: 31 October 2012 / Published online: 15 November 2012 Ó Springer Science+Business Media Dordrecht 2012 Abstract Secondary metabolites are one the most per- diet with the high PA concentration, while larvae that were vasive defensive mechanisms in plants. Many specialist pretreated with a high PA diet showed no discrimination herbivores have evolved adaptations to overcome these between future feeding of different PA concentration diets. defensive compounds. Some herbivores can even take We discuss our results using mechanistic and evolutionary advantage of these compounds by sequestering them for approaches. Finally, we discuss how these results have protection and/or mate attraction. One of the most studied important implications on the evolution of plant herbivore specialist insects that sequesters secondary metabolites is interactions and how specialist herbivores may decrease the arctiid moth Utetheisa ornatrix. This species sequesters the levels of chemical defenses on plant populations. pyrrolizidine alkaloids (PAs) from its host plant, the legume Crotalaria spp. The sequestered PAs are used as a Keywords Coevolution Á Crotalaria Á Chemical defense Á predator repellent and as a mating pheromone. We used Diet choice Á Mating choice Á Taste receptors this species to test larval preference for different concen- trations of PAs. We purified PAs from plant material and added them at different concentrations to an artificial diet.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS INDONESIA January 2007 Forest Resources Development Service Working Paper FBS/19E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Indonesia DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Indonesia. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Indonesia TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Lepidoptera: Erebidae, Arctiinae) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España González, E.; Beccacece, H. M. First record of Dysschema sacrifica (Hübner, [1831]) on Soybean ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) SHILAP Revista de Lepidopterología, vol. 45, núm. 179, septiembre, 2017, pp. 403-408 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45552790005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 45 (179) septiembre 2017: 403-408 eISSN: 2340-4078 ISSN: 0300-5267 First record of Dysschema sacrifica (Hübner, [1831]) on Soybean ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) E. González & H. M. Beccacece Abstract The presence of Dysschema sacrifica (Hübner, [1831]) on soybean ( Glycine max (L.) Merr) is reported for the first time. Larvae of this species were found consuming soybean leaves in soybean fields in Córdoba province, Argentina, and were able to complete their life cycle. Characteristics of adults and larvae are provided for rapid identification in the field. Due to the widespread distribution of this species within the region where soybean is more intensively cultivated in South America, we conclude that D. sacrifica is a potential soybean pest. Further studies on infestation frequency, damage levels and control by natural enemies are needed. KEY WORDS: Lepidoptera, Erebidae, Arctiidae, Dysschema sacrifica , soybean, pest, Argentina. Primer registro de Dysschema sacrifica (Hübner, [1831]) en soja ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) Resumen Se reporta por primera vez la presencia de Dysschema sacrifica (Hübner, [1831]) en soja ( Glycine max (L.) Merr).
    [Show full text]
  • 000363920800046.Pdf
    UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP Versão do arquivo anexado / Version of attached file: Versão do Editor / Published Version Mais informações no site da editora / Further information on publisher's website: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141480 DOI: 10.1371/journal.pone.0141480 Direitos autorais / Publisher's copyright statement: ©2015 by Public Library of Science. All rights reserved. DIRETORIA DE TRATAMENTO DA INFORMAÇÃO Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br RESEARCH ARTICLE Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore Carlos H. Z. Martins1,2☯, Beatriz P. Cunha3‡, Vera N. Solferini3‡, José R. Trigo1☯* 1 Laboratório de Ecologia Química, Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Caixa Postal 6109, 13083–970, Campinas, São Paulo, Brazil, 2 Programa de Pós-Graduação em Biologia Funcional e Molecular, Instituto de Biologia, UNICAMP, Caixa Postal 6109, 13084–970, Campinas, São Paulo, Brazil, 3 Departamento de Genética e Evolução, Instituto de Biologia, Unicamp, Caixa Postal 6109, 13083–970, Campinas, São Paulo, Brazil ☯ These authors contributed equally to this work. ‡ These authors also contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Martins CHZ, Cunha BP, Solferini VN, Trigo Sequestration of chemical defenses from host plants is a strategy widely used by herbivo- JR (2015) Feeding on Host Plants with Different rous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides Effectiveness of a Specialist Herbivore.
    [Show full text]
  • PACIFIC INSECTS MONOGRAPH Ll
    PACIFIC INSECTS MONOGRAPH ll Lepidoptera of American Samoa with particular reference to biology and ecology By John Adams Comstock Published by Entomology Department, Bernice P. Bishop Museum Honolulu, Hawaii, U. S. A. 1966 PACIFIC INSECTS MONOGRAPHS Published by Entomology Department, Bernice P. Bishop Museum, Honolulu, Hawaii, 96819, U. S. A. Editorial Committee: J. L. Gressitt, Editor (Honolulu), S. Asahina (Tokyo), R. G. Fennah (London), R. A. Harrison (Christchurch), T. C. Maa (Honolulu & Taipei), C. W. Sabrosky (Washington, D. C), R. L. Usinger (Berkeley), J. van der Vecht (Leiden), K. Yasumatsu (Fukuoka), E. C. Zimmerman (New Hampshire). Assistant Editors: P. D. Ashlock (Honolulu), Carol Higa (Honolulu), Naoko Kunimori (Fukuoka), Setsuko Nakata (Honolulu), Toshi Takata (Fukuoka). Business Manager: C. M. Yoshimoto (Honolulu). Business Assistant: Doris Anbe (Honolulu). Business Agent in Japan: K. Yasumatsu (Fukuoka). Entomological staff, Bishop Museum, 1966: Doris Anbe, Hatsuko Arakaki, P. D. Ashlock, S. Azuma, Madaline Boyes, Candida Cardenas, Ann Cutting, M. L. Goff, J. L. Gressitt (Chairman), J. Harrell, Carol Higa, Y. Hirashima, Shirley Hokama, E. Holzapfel, Dorothy Hoxie, Helen Hurd, June Ibara, Naoko Kuni­ mori, T. C. Maa, Grace Nakahashi, Setsuko Nakata (Adm. Asst.), Tulene Nonomura, Carol Okuma, Ka­ tharine Pigue, Linda Reineccius, T. Saigusa, I. Sakakibara, Judy Sakamoto, G. A. Samuelson, Sybil Seto, W. A. Steffan, Amy Suehiro, Grace Thompson, Clara Uchida, J. R. Vockeroth, Nixon Wilson, Mabel Ya- tsuoka, C. M. Yoshimoto, E. C. Zimmermann. Field associates: M. J. Fitzsimons, E. E. Gless, G. E. Lip- pert, V. Peckham, D. S. Rabor, J. Sedlacek, M. Sedlacek, P. Shanahan, R. Straatman, J. Strong, H. M. Tor- revillas, A.
    [Show full text]
  • Cosmosoma Myrodora, Scarlet-Bodied Wasp Moth (Lepidoptera: Erebidae) Joseph Mccarthy, Forest Huval, Chris Carlton and Gene Reagan
    Pest Management and Insect Identification Series Cosmosoma myrodora, Scarlet-Bodied Wasp Moth (Lepidoptera: Erebidae) Joseph McCarthy, Forest Huval, Chris Carlton and Gene Reagan Description Larvae of the scarlet-bodied wasp moth are light yellow and are entirely covered in long, thin hairs.The The scarlet-bodied wasp moth is a member of the hairs are yellowish-white with black tips mixed with a few family Erebidae.The species is well known for its striking black hairs, giving it a speckled appearance.The head and coloration and Batesian mimicry. Batesian mimicry refers rear part of the body are darker yellow, along with the to a situation where an otherwise harmless animal legs. imitates the coloration and behavior of a dangerous or inedible animal to avoid predation.The adult has a bright The caterpillar of this species constructs a cocoon red thorax, abdomen and legs.The abdomen includes from its larval hairs to protect the pupa within.The eight visible segments.The first four are red with a black cocoon is transparent, yellow and speckled with small stripe down the middle and metallic blue spots on each black spots. segment.The last four segments are black, each with three metallic blue spots (one in the center and two on Life Cycle either side).The wings are clear with black veins and Females lay eggs on hempvine (Mikania cordifolia or a thick black outline.The head is metallic blue, bearing Mikania scandens), the larval host plant.When the larvae large, black eyes and black antennae with white tips.The emerge, they first eat their egg casings before moving on bright coloration, clear wings and bicolored antennae to the plant itself.After about one week under normal give the moth its “wasp-like” appearance.This mimicry summer conditions in Louisiana, larvae build their is most apparent when it is flying.The fast-moving wings cocoons and pupate.The adult moths emerge after about and warning colors are convincing.
    [Show full text]
  • Erebidae-Erebinae.Pdf
    Erebidae Erebinae Achaea janata (Linnaeus, 1758) Taxonomy: Phalaena janata Linnaeus, 1758; 527.– . Phalaena melicerta Drury, [1773]:46,. – India (Bombay). Noctua tigrina Fabricius, 1775. Noctua cyathina Macleay, 1826 . Catocala traversii Fereday, 1877. Ophiusa ekeikei Bethune-Baker, 1906. melicertoides Strand, 1914: 74. Imago melicertella Strand, 1914: 74. Achaea melicertoides Gaede, 1938. Achaea melicertella Gaede, 1938. Hostplant: Flight period: viii. Altitude: 460 m. Distribution map Erebidae Erebinae Achaea serva (Fabricius, 1775) Taxonomy: Noctua serva Fabricius, 1775. Achaea fasciculipes Walker, 1858. fuscosuffusa Strand, 1914: 73. Achaea fuscosuffusa Gaede, 1938. Hostplant: Flight period: ix. Altitude: 2900 m. Imago Distribution map Erebidae Erebinae Agonista hypoleuca Guenee, 1852 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Arcte polygrapha Kollar, 1844 Taxonomy: Arcte polygrapha Kollar, 1844± ./ In- dia (Himalaya) Hostplant Flight period: v, viii. Altitude: 460-1975 m. Imago Distribution map Erebidae Erebinae Artena dotata (Fabricius, 1794) Taxonomy: Noctua dotata Fabricius, 1794: 55.– E. India. Hostplant: Flight period: v-vi. Altitude: 1580-2020 m. Imago Distribution map Erebidae Erebinae Blepharidia griseirufa Hampson, 1894 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Capnodes caustiplaga Hampson, 1895 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Capnodes pustulifera Walker, 1864 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Catocala nupta (Linnaeus, 1767) Taxonomy: Phalaena nupta Linnaeus, 1767: 841.– Germany. Catocala unicuba Walker, [1858]:1210.– India. Hostplant: Populus, P. nigra, Salix, S. fragilis Flight period: ix. Altitude: 2900 m. Imago Distribution map Erebidae Erebinae Chrysopera combinans (Walker, 1858) Taxonomy: Achaea combinans Walker, 1858: 1399.- Ceylon.
    [Show full text]
  • Biology of Achaea Janata Linneaus on Castor and Rose N.K.S
    Agric. Sci. Digest, 22 (3) : 213 - 214,2002 BIOLOGY OF ACHAEA JANATA LINNEAUS ON CASTOR AND ROSE N.K.S. Bhadauria, U.C. Singh and U.S. Dwivedi Department of Entomology, College of Agriculture, JNKW Campus, Gwalior - 474 002, India ABSTRACT Biology ofAchaeajanata Linneaus was studied on the two principal hosts viz., castor and rose to find suitable host for development of this insect under laboratory conditions. Castor was found more suitable host than rose on the basis of more number of eggs, shorter larval and pupal period with lower larval and pupal mortality and higher per cent adult emergence. The castor semilooper, Achaeajanata with filter paper. The adults emerging on the (Lepidoptera: Noctuidati} is a serious pest of same day (Male, female) were paired and castor in many castor growing states of India. released for egg laying in oviposition cages (45 Besides castor, it feeds on different host plants x 45 x 45 cm). Honey sulution (5%) was like pomegranate, rose, dudhi etc. Food plants provided as foot to adults. Observations on play a vital role in the development, survival various developmental stages Le. eggs to adults and reproductive potential of insects (Painter, were recorded on both the hosts. Experiment 1951). The present contribution deals with was performed in four sets. the stYEIies on the biology of the pest on castor The number of eggs laid on castor was and rose. more (535.3 ± 26.8 egs/female) than rose The biology of castor semi looper was :(250.4 ± 12.5/female) (Table 1). Gaikwad studied in the laboratory.
    [Show full text]
  • Influence of Castor Genotypes with Different Wax Blooms on Oviposition
    Journal of Pharmacognosy and Phytochemistry 2018; 7(5): 2711-2715 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(5): 2711-2715 Influence of castor genotypes with different wax Received: 01-07-2018 Accepted: 03-08-2018 blooms on oviposition preference of endolarval parasitoid Snellenius maculipennis (Szepligate) of K Chakkani Priya Acharya N.G. Ranga castor semilooper Achaea janata L Agricultural University, Lam, Guntur, Andhra Pradesh, India KV Hari Prasad K Chakkani Priya, KV Hari Prasad, NC Venkateswarlu and V Umamahesh Acharya N.G. Ranga Agricultural University, Lam, Abstract Guntur, Andhra Pradesh, India The A. janata larvae reared on susceptible genotype DPC-9 had significantly greater parasitisation by S. maculipennis than the moderately resistant genotype 48-1 and resistant genotype GCH-4 tested under no- NC Venkateswarlu choice, dual-choice and multi-choice conditions, suggesting that host genotypes plays a significant role in Acharya N.G. Ranga the effectiveness of S. maculipennis in parasitisation of A. janata larvae. The increased parasitism of A. Agricultural University, Lam, Guntur, Andhra Pradesh, India janata larvae by S. maculipennis on the susceptible genotype DPC-9 might be due to the fact that the host larvae was healthy on the susceptible genotype because lack of resistance to the herbivore. Percentage V Umamahesh parasitism was greater under no-choice condition as compared to that under multi-choice and dual choice Acharya N.G. Ranga conditions, which may be largely because of non-availability of alternate host plant to the females of S. Agricultural University, Lam, maculipennis in no choice condition. The genotype DPC-9 was hospitable to S.
    [Show full text]
  • Green Synthesis of Silver Nanoparticles Using Euphorbia Hirta
    Euphorbia hirta silver nanopaticles JBiopest 5(1): 1-6 JBiopest 7(Supp.): 54-66(2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) G. Durga Devi* K. Murugan and C. Panneer Selvam ABSTRACT Biosynthesis of insecticides from plant extracts is currently under exploitation. Plant extracts are very cost effective and eco-friendly and thus can be an economic and efficient alternative for the large-scale synthesis of synthetic and other chemical insecticides. So the present study was carried out to establish the larvicidal effect of synthesized silver nanoparticles (AgNPs) using leaf extract of Euphorbia hirta (Euphorbiaceae) against the first to fourth instar larvae and pupae of the crop pest of cotton boll worm , Helicoverpa armigera. The production of the AgNPs synthesized using leaf extract of Euphorbia hirta was evaluated through a UV–Vis spectrophotometer in a wavelength range of 200 to 700 nm. An SEM micrograph showed 30- 60-nm-size aggregates of spherical- and cubic-shaped nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of silver. The results showed that the considerable larval mortality was found in the synthesized AgNPs against the I instar to IV instar larvae and pupae of Helicoverpa armigera. The leaf extract exhibited larval toxicity against the I instar to IV instar larvae and pupae of Helicoverpa armigera. The chi-square value was significant at p<0.05 level. Nanoparticle treatment showed toxicity against larval instars of Helicoverpa armigera and had impact on the biological parameters of Helicoverpa armigera.
    [Show full text]
  • Pests of Gingelly, Castor, Mustard and Linseed
    Lecture No 9 PESTS OF GINGELLY, CASTOR, MUSTARD AND LINSEED Pests of Gingelly Though a dozen pests attack gingelly, only leaf webber, gall fly and leaf hopper as vector are important and cause economic damage in gingelly. Major pests 1. Leaf webber Antigastra catalaunalis Pyralidae Lepidoptera 2. Sphinx moth Acherontia styx Sphingidae Lepidoptera 3. Gall fly Asphondylia sesami Cecidomyiidae Diptera 4. Leaf hopper Orosius albicinctus Cicadallidae Hemiptera 5. Pod bug Elasmolomus sordidus Lygaeidae Hemiptera Minor pests 6. Aphid Aphis gossypii Aphididae Hemiptera I. Leaf feeders 1. Leaf webber: Antigastra catalaunalis (Pyralidae: Lepidoptera) Distribution and status: India, Africa, South Europe, Malta, Burma, Bangladesh, Indonesia, Sri Lanka and U.S.S.R. Host range: Sesame, Antirrhinum and Duranta. Damage symptoms Larva webs the top leaves together and bore the tender shoots in the vegetative phase. Flowers and young capsules are bored at reproductive stage. Bionomics Moth is brown with yellowish brown wings. It lays eggs on tender parts of plants. The egg period is 4-5 days. Fully grown pale green larva with black head and dots all over the body measures 20 mm in length. The larval period is 11-16 days. It pupates in leaf folds in a white silken cocoon for 4-7 days. ETL: 2 webbed leaves/sq.m. (or) 10% damage. Management 1. Culture of sesame like EH7, 57, 84, 105, 106 and 156 should be encouraged as these are observed to be completely resistant against A. catalaunalis. 2. Dusting the crop with 2% parathion. 3. Spraying with dimethoate 30 EC 500 ml or methyl parathion 50 EC 500 ml or endosulfan 35 EC 1.25 L or carbaryl 50% WP I kg in 700 L water per hectare.
    [Show full text]