WO 2016/176208 Al 3 November 2016 (03.11.2016) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2016/176208 Al 3 November 2016 (03.11.2016) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/176208 Al 3 November 2016 (03.11.2016) P O P C T (51) International Patent Classification: SCIACCA, Cathi; C/o Intercept Pharmaceuticals, Inc., C07J 9/00 (2006.01) A61K 9/14 (2006.01) 4760 Eastgate Mall, San Diego, CA 92121 (US). ELIOT, A61K 31/575 (2006.01) A61K 9/20 (2006.01) Lise; C/o Intercept Pharmaceuticals, Inc., 4760 Eastgate Mall, San Diego, CA 92121 (US). EDWARDS, Jeffrey; (21) International Application Number: C/o Intercept Pharmaceuticals, Inc., 4760 Eastgate Mall, PCT/US2016/029369 San Diego, CA 92121 (US). MACCONELL, Leigh A.; (22) International Filing Date: 773 Corinia Court, Encinitas, CA 92024 (US). MAR- 26 April 2016 (26.04.2016) MON, Tonya K.; 11417 Volans Street, San Diego, CA 92126 (US). (25) Filing Language: English (74) Agent: IWAMOTO-FAN, Michelle; 450 W. 15th Street, English (26) Publication Language: Suite 505, New York, NY 1001 1 (US). (30) Priority Data: (81) Designated States (unless otherwise indicated, for every 62/153,040 27 April 2015 (27.04.2015) US kind of national protection available): AE, AG, AL, AM, 62/3 17,933 4 April 2016 (04.04.2016) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (71) Applicants: INTERCEPT PHARMACEUTICALS, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, INC. [US/US]; 450 W. 15th Street, Suite 505, New York, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, NY 1001 1 (US). SUMITOMO DAINIPPON PHARMA HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, CO., LTD. [JP/JP]; 6-8, Dosho-machi 2-chome, Chuo-ku, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, Osaka-shi, Osaka, 541-8524 (JP). MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (72) Inventors: LANCASTER, Richard G.; 4436 Coronado SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Avenue, San Diego, CA 92107 (US). OLMSTEAD, Kay TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. K.; 1435 Logan Court, Escondido, CA 92027 (US). KAGIHIRO, Masashi; C/o Sumitomo Dainippon Pharma (84) Designated States (unless otherwise indicated, for every Co., Ltd., 1-98, Kasugadenaka 3-chome, Konohana-ku, kind of regional protection available): ARIPO (BW, GH, Osaka-shi, Osaka, 554-0022 (JP). TAOKA, Ikuko; C/o GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Sumitomo Dainippon Pharma Co., Ltd., 1-98, Kasugade TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, naka 3-chome, Konohana-ku, Osaka-shi, Osaka, 554-0022 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (JP). MATONO, Mitsuhiro; C/o Sumitomo Dainippon DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Pharma Co., Ltd., 3-45, Kasugadenaka 1-chome, Ibaraki- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, shi, Osaka, 567-0878 (JP). PRUZANSKI, Mark; 421 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Hudson, New York, NY 10014 (US). SHAPIRO, David; GW, KM, ML, MR, NE, SN, TD, TG). 5110 Via Avante, Rancho Santa Fe, CA 92067 (US). Published: HOOSHMAND-RAD, Roya; C/o Intercept Pharmaceutic als, Inc., 4760 Eastgate Mall, San Diego, CA 92121 (US). — with international search report (Art. 21(3)) PENCEK, Richard; C/o Intercept Pharmaceuticals, Inc., 4760 Eastgate Mall, San Diego, CA 92121 (US). (54) Title: COMPOSITIONS OF OBETICHOLIC ACID AND METHODS OF USE (57) Abstract: The disclosure relates to obeticholic acid formulations with improved stability, dissolution, and/or solubility, meth ods of preparing the same for use and methods of treating various diseases and conditions. COMPOSITIONS OF OBETICHOLIC ACID AND METHODS OF USE BACKGROUND [0001] The farnesoid X receptor (FXR), also known as the bile acid receptor (BAR) or NR1H4, is a member of the nuclear receptor superfamily of ligand-activated transcription factors. FXR forms with retinoid X receptor (RXR) a heterodimer receptor crucial for bile acid homeostasis. FXR is expressed in various tissues including the liver, kidney, intestine, colon, ovary, and adrenal gland, and is activated by a variety of naturally occurring bile acids, including the primary bile acid chenodeoxycholic acid (CDCA) and its taurine and glycine conjugates. Upon activation, the FXR-RXR heterodimer binds the promoter region of target genes and regulates their expression. [0002] 6-Ethyl-chenodeoxycholic acid (6-ECDCA, or obeticholic acid, or OCA), a bile acid derivative, shows a potent FXR activating activity, and accordingly offers great promise for the treatment of FXR-mediated diseases or conditions. Thus, there is a need to develop obeticholic acid compositions having desirable dissolution profile and solubility, and possessing advantageous storage stability. SUMMARY [0003] The present disclosure relates to novel formulations of obeticholic acid, an FXR agonist, with improved stability, dissolution, and solubility, methods of preparing the same and methods of using the novel formulations for treating a disease or condition. In certain instances, the disease or condition is primary biliary cirrhosis (PBC), also known as primary biliary cholangitis. In other instances, the disease or condition is primary sclerosing cholangitis (PSC), chronic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), hepatitis C infection, alcoholic liver disease, liver damage due to progressive fibrosis, or liver fibrosis. In another instance, the disease is NASH. In still other instances, the disease or condition is solid-tumor cancer such as, for example, hepatocellular carcinoma (HCC), colorectal cancer, gastric cancer, liver cancer, breast cancer, kidney cancer, or pancreatic cancer. Further provided herein are novel dosing regimens for administration of obeticholic acid for treatment of the diseases or conditions described herein. [0004] A first aspect of the disclosure relates to a composition comprising obeticholic acid, or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof, wherein obeticholic acid or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof is in the form of particles, and wherein at least 50% of the particles have a diameter of less than 200 µm. Such compositions include all those described herein. [0005] Another aspect of the disclosure relates to treating a disease or condition described herein in a patient in need thereof by administering a composition that includes obeticholic acid, or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof, where the obeticholic acid or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof is in the form of particles. [0006] Another aspect of the disclosure relates to treating a disease or condition described herein in a patient in need thereof by administering a composition that includes obeticholic acid, or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof, where the obeticholic acid or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof is in the form of particles, and wherein at least 50% of the particles have a diameter of 200 µm or less. [0007] Another aspect of the disclosure relates to treating primary biliary cirrhosis (PBC) in a patient in need thereof by administering a composition that includes obeticholic acid, or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof, optionally in a titration period, where the obeticholic acid or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof is in the form of particles, and wherein at least 50% of the particles have a diameter of 200 µm or less. [0008] In still another aspect of the disclosure is a method of treating primary sclerosing cholangitis (PSC), chronic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), hepatitis C infection, alcoholic liver disease, liver damage due to progressive fibrosis, or liver fibrosis in a patient in need thereof by administering a composition that includes obeticholic acid, or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof, optionally in a titration period, where the obeticholic acid or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof is in the form of particles. In one example, at least 50% of the particles have a diameter of 200 µm or less. [0009] In yet another aspect of the disclosure is a method of treating a solid-tumor cancer in a patient in need thereof by administering a composition that includes obeticholic acid, or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof, optionally in a titration period, where the obeticholic acid or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof is in the form of particles. In one example, at least 50% of the particles have a diameter of 200 µm or less. [0010] In another aspect of the disclosure is a method of treating an autoimmune disease in a patient in need thereof by administering a composition that obeticholic acid, or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof, optionally in a titration period, where the obeticholic acid or a pharmaceutically acceptable salt, ester, or amino acid conjugate thereof is in the form of particles. In one example, at least 50% of the particles have a diameter of 200 µm or less. [0011] In another aspect of the disclosure are methods of treating a disease or condition described herein by administering a obeticholic acid composition described herein where the obeticholic acid composition is administered as part of a treatment regimen that includes a titration period and a starting dose of the obeticholic acid composition at an amount of about 5 mg or 10 mg.
Recommended publications
  • By Exemestane, a Novel Irreversible Aromatase Inhibitor, in Postmenopausal Breast Cancer Patients1
    Vol. 4, 2089-2093, September 1998 Clinical Cancer Research 2089 In Vivo Inhibition of Aromatization by Exemestane, a Novel Irreversible Aromatase Inhibitor, in Postmenopausal Breast Cancer Patients1 Jfirgen Geisler, Nick King, Gun Anker, ation aromatase inhibitor AG3 has been used for breast cancer Giorgio Ornati, Enrico Di Salle, treatment for more than two decades (1). Because of substantial side effects associated with AG treatment, several new aro- Per Eystein L#{248}nning,2 and Mitch Dowsett matase inhibitors have been introduced in clinical trials. Department of Oncology, Haukeland University Hospital, N-502l Aromatase inhibitors can be divided into two major classes Bergen, Norway [J. G., G. A., P. E. L.]; Academic Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, United of compounds, steroidal and nonsteroidal drugs. Nonsteroidal Kingdom [N. K., M. D.]; and Department of Experimental aromatase inhibitors include AG and the imidazole/triazole Endocrinology, Pharmacia and Upjohn, 20014 Nerviano, Italy [G. 0., compounds. With the exception of testololactone, a testosterone E. D. S.] derivative (2), steroidal aromatase inhibitors are all derivatives of A, the natural substrate for the aromatase enzyme (3). The second generation steroidal aromatase inhibitor, 4- ABSTRACT hydroxyandrostenedione (4-OHA, formestane), was found to The effect of exemestane (6-methylenandrosta-1,4- inhibit peripheral aromatization by -85% when administered diene-3,17-dione) 25 mg p.o. once daily on in vivo aromati- by the i.m. route at a dosage of 250 mg every 2 weeks as zation was studied in 10 postmenopausal women with ad- recommended (4) but only by 50-70% (5) when administered vanced breast cancer.
    [Show full text]
  • Identification of Chalcone Derivatives As Putative Non-Steroidal Aromatase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Publishing @ NISCAIR Indian Journal of Chemistry Vol. 59B, February 2020, pp. 283-293 Identification of chalcone derivatives as putative non-steroidal aromatase inhibitors potentially useful against breast cancer by molecular docking and ADME prediction Umang Shah*a, Samir Patela, Mehul Patela, Karan Gandhia & Ashish Patelb a Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa 388 421, India b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Parul University, P.O. Limda 391 760, Dist. Vadodara, India E-mail: [email protected] Received 30 August 2019; accepted (revised) 16 October 2019 Aromatase is an influential target to overcome estrogen receptor positive breast cancer, as the enzyme is responsible for conversion of androstenedione to estrone, a promising drug target for therapeutic management of breast cancer. Chalcones are prominent biosynthetic compounds and parent candidate for the synthesis of heterocycles with diversified biological activities. The prime objective of the present study is to evaluate the binding interaction of 2-hydroxyphenyl- prop-2-en-1- one (1A-1X), 2-hydroxy-4-methoxyphenyl- prop-2-en-1-one (3A-3X), 2,4-dihydroxyphenyl- prop-2-en-1-one (9A-9X) and 1-hydroxynaphthalen-2-yl-prop-2-en-1-one (5A-5X) derivatives with aromatase enzyme by molecular docking study and also check their ADME properties by maestro suit. The designed chalcones derivatives have been docked against our target protein with PDB id 3S7S retrieved from the protein data bank, whereas exemestane has been taken as the positive control.
    [Show full text]
  • Fast Three Dimensional Pharmacophore Virtual Screening of New Potent Non-Steroid Aromatase Inhibitors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE J. Med. Chem. 2009, 52, 143–150 143 provided by Estudo Geral Fast Three Dimensional Pharmacophore Virtual Screening of New Potent Non-Steroid Aromatase Inhibitors Marco A. C. Neves,† Teresa C. P. Dinis,‡ Giorgio Colombo,*,§ and M. Luisa Sa´ e Melo*,† Centro de Estudos Farmaceˆuticos, Laborato´rio de Quı´mica Farmaceˆutica, Faculdade de Farma´cia, UniVersidade de Coimbra, 3000-295, Coimbra, Portugal, Centro de Neurocieˆncias, Laborato´rio de Bioquı´mica, Faculdade de Farma´cia, UniVersidade de Coimbra, 3000-295, Coimbra, Portugal, and Istituto di Chimica del Riconoscimento Molecolare, CNR, 20131, Milano, Italy ReceiVed July 28, 2008 Suppression of estrogen biosynthesis by aromatase inhibition is an effective approach for the treatment of hormone sensitive breast cancer. Third generation non-steroid aromatase inhibitors have shown important benefits in recent clinical trials with postmenopausal women. In this study we have developed a new ligand- based strategy combining important pharmacophoric and structural features according to the postulated aromatase binding mode, useful for the virtual screening of new potent non-steroid inhibitors. A small subset of promising drug candidates was identified from the large NCI database, and their antiaromatase activity was assessed on an in vitro biochemical assay with aromatase extracted from human term placenta. New potent aromatase inhibitors were discovered to be active in the low nanomolar range, and a common binding mode was proposed. These results confirm the potential of our methodology for a fast in silico high-throughput screening of potent non-steroid aromatase inhibitors. Introduction built and proved to be valuable in understanding the binding 14-16 Aromatase, a member of the cytochrome P450 superfamily determinants of several classes of inhibitors.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Differences Between the Non-Steroidal Aromatase Inhibitors Anastrozole and Letrozole – of Clinical Importance?
    British Journal of Cancer (2011) 104, 1059 – 1066 & 2011 Cancer Research UK All rights reserved 0007 – 0920/11 www.bjcancer.com Minireview Differences between the non-steroidal aromatase inhibitors anastrozole and letrozole – of clinical importance? ,1 J Geisler* 1 Institute of Clinical Medicine, University of Oslo, Faculty Division at Akershus University Hospital, Sykehusveien 27, Lørenskog N-1478, Norway Aromatase inhibition is the gold standard for treatment of early and advanced breast cancer in postmenopausal women suffering from an estrogen receptor-positive disease. The currently established group of anti-aromatase compounds comprises two reversible aromatase inhibitors (anastrozole and letrozole) and on the other hand, the irreversible aromatase inactivator exemestane. Although exemestane is the only widely used aromatase inactivator at this stage, physicians very often have to choose between either anastrozole or letrozole in general practice. These third-generation aromatase inhibitors (letrozole/Femara (Novartis Pharmaceuticals, Basel, Switzerland) and anastrozole/Arimidex (AstraZeneca, Pharmaceuticals, Macclesfield, Cheshire, UK)), have recently demonstrated superior efficacy compared with tamoxifen as initial therapy for early breast cancer improving disease-free survival. However, although anastrozole and letrozole belong to the same pharmacological class of agents (triazoles), an increasing body of evidence suggests that these aromatase inhibitors are not equipotent when given in the clinically established doses. Preclinical and clinical evidence indicates distinct pharmacological profiles. Thus, this review focuses on the differences between the non-steroidal aromatase inhibitors allowing physicians to choose between these compounds based on scientific evidence. Although we are waiting for the important results of a still ongoing head-to-head comparison in patients with early breast cancer at high risk for relapse (Femara Anastrozole Clinical Evaluation trial; ‘FACE-trial’), clinicians have to make their choices today.
    [Show full text]
  • WO 2017/112768 Al 29 June 2017 (29.06.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/112768 Al 29 June 2017 (29.06.2017) P O P C T (51) International Patent Classification: Delaware 19707 (US). ZHUANG, Linghang; 3135 Fox C07D 471/10 (2006.01) A61K 31/47 (2006.01) Drive, Chalfont, Pennsylvania 18914 (US). C07D 487/10 (2006.01) A61K 31/519 (2006.01) (74) Agents: DAVEY, PH.D., Evan A. et al; Fish & Richard C07D 495/04 (2006.01) A61P 35/02 (2006.01) son P.C., P.O. Box 1022, Minneapolis, Minnesota 55440- C07D 513/04 (2006.01) 1022 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 16/0680 16 kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 2 1 December 2016 (21 .12.2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (26) Publication Language: English KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (30) Priority Data: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 62/270,973 22 December 201 5 (22. 12.2015) US RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (71) Applicant: VITAE PHARMACEUTICALS, INC.
    [Show full text]
  • Preliminary Data from Ongoing Adjuvant Aromatase Inhibitor Trials I
    Vol. 7, 4397s-4401s, December 2001 (Suppl.) Clinical Cancer Research 4397s Preliminary Data from Ongoing Adjuvant Aromatase Inhibitor Trials I Paul E. Goss z Introduction Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada The growth of hormone receptor-positive breast cancer can be altered clinically by several classes of agents that antagonize the effects of estrogen (1). The SERMs, 3 exemplified by tamox- Abstract ifen, constitute one such class of drugs. Pure antiestrogens such With recent results showing letrozole and anastrozole as fulvestrant (Faslodex) also exert a potent antiestrogenic effect to be superior to tamoxifen as initial therapy for advanced and show efficacy in tamoxifen-resistant cell lines in preclinical disease, the aromatase inhibitors are poised to establish their models. Thus, unlike tamoxifen, which exerts both an agonist place in the adjuvant therapy of postmenopausal receptor- and an antagonist effect, fulvestrant is a pure antagonist and acts positive breast cancer. A review of the rationale, design, and by down-regulating ER content (2). preliminary results of the ongoing adjuvant trials that in- Aromatase (estrogen synthetase) inhibitors antagonize the clude aromatase inhibitors will be presented, along with the action of estrogen by reducing its levels both in the circulation ongoing or planned substudies. Two strategies employing and in normal and malignant breast tissue (3). They were ini- aromatase inhibitors after tamoxifen are being evaluated. tially tested in postmenopausal women with breast cancer pro- gression after tamoxifen treatment. A superior outcome with The MA.17 international intergroup trial is randomizing these drugs compared to either megestrol acetate or aminoglu- postmenopausal patients who are disease-free after 5 years tethimide resulted in their becoming the established second-line of adjuvant tamoxifen to an additional 5 years of ietrozole or treatment for ER-positive metastatic breast cancer (4-13).
    [Show full text]
  • Aromatase and Its Inhibitors: Significance for Breast Cancer Therapy † EVAN R
    Aromatase and Its Inhibitors: Significance for Breast Cancer Therapy † EVAN R. SIMPSON* AND MITCH DOWSETT *Prince Henry’s Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia; †Department of Biochemistry, Royal Marsden Hospital, London SW3 6JJ, United Kingdom ABSTRACT Endocrine adjuvant therapy for breast cancer in recent years has focussed primarily on the use of tamoxifen to inhibit the action of estrogen in the breast. The use of aromatase inhibitors has found much less favor due to poor efficacy and unsustainable side effects. Now, however, the situation is changing rapidly with the introduction of the so-called phase III inhibitors, which display high affinity and specificity towards aromatase. These compounds have been tested in a number of clinical settings and, almost without exception, are proving to be more effective than tamoxifen. They are being approved as first-line therapy for elderly women with advanced disease. In the future, they may well be used not only to treat young, postmenopausal women with early-onset disease but also in the chemoprevention setting. However, since these compounds inhibit the catalytic activity of aromatase, in principle, they will inhibit estrogen biosynthesis in every tissue location of aromatase, leading to fears of bone loss and possibly loss of cognitive function in these younger women. The concept of tissue-specific inhibition of aromatase expression is made possible by the fact that, in postmenopausal women when the ovaries cease to produce estrogen, estrogen functions primarily as a local paracrine and intracrine factor. Furthermore, due to the unique organization of tissue-specific promoters, regulation in each tissue site of expression is controlled by a unique set of regulatory factors.
    [Show full text]
  • Aromatase Inhibitors and Their Use in the Sequential Setting
    Endocrine-Related Cancer (1999) 6 259-263 Aromatase inhibitors and their use in the sequential setting R C Coombes, C Harper-Wynne1 and M Dowsett1 Cancer Research Campaign, Department of Cancer Medicine, Division of Medicine, Imperial College School of Medicine, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK 1Academic Department of Biochemistry, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK (Requests for offprints should be addressed to R C Coombes) Abstract Over the past decade several novel aromatase inhibitors have been introduced into clinical practice. The discovery of these drugs followed on from the observation that the main mechanism of action of aminogluthemide was via inhibition of the enzyme aromatase thereby reducing peripheral levels of oestradiol in postmenopausal patients. The second-generation drug, 4-hydroxyandrostenedione (formestane), was introduced in 1990 and although its use was limited by its need to be given parenterally it was found to be a well-tolerated form of endocrine therapy. Third-generation inhibitors include vorozole, letrozole, anastrozole and exemestane, the former three being non-steroidal inhibitors, the latter being a steroidal inhibitor. All are capable of inhibiting aromatase action by >95% compared with 80% in the case of 4-hydroxyandrostenedione. The sequential use of different generations of aromatase inhibitors in the same patients is discussed. Studies suggest that an optimal sequence of these compounds may well result in longer remission in patients with hormone receptor positive tumours. Endocrine-Related Cancer (1999) 6 259-263 Introduction reduced, although formal trials comparing different dose regimens and using sufficient numbers of patients to The aromatase enzyme is a cytochrome P450-mediated provide the necessary statistical power have not been enzyme complex responsible for the conversion of the adequately carried out.
    [Show full text]
  • Initial Studies with 11C-Vorozole PET Detect Overexpression of Intratumoral Aromatase in Breast Cancer
    Initial Studies with 11C-Vorozole PET Detect Overexpression of Intratumoral Aromatase in Breast Cancer Anat Biegon1, Kenneth R. Shroyer2, Dinko Franceschi1, Jasbeer Dhawan1, Mouna Tahmi1, Deborah Pareto3, Patrick Bonilla4, Krystal Airola1, and Jules Cohen5 1Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York; 2Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York; 3Radiology Department, Vall d’Hebron University Hospital, Barcelona, Spain; 4Department of Obstetrics and Gynecology, Nassau University Medical Center, East Meadow, New York; and 5Hematology/ Oncology, Stony Brook University School of Medicine, Stony Brook, New York Aromatase inhibitors are the mainstay of hormonal therapy in Aromatase, a member of the cytochrome P450 protein super- – estrogen receptor positive breast cancer, although the response family, is a unique product of the CYP19 gene (1). Aromatase rate is just over 50% and in vitro studies suggest that only two thirds catalyzes the last and obligatory step of estrogen biosynthesis. of postmenopausal breast tumors overexpress aromatase. The goal Aromatase expression and activity in the ovary (2) support estro- of the present study was to validate and optimize PET with 11C- vorozole for measuring aromatase expression in postmenopausal gen synthesis for the classic endocrine model, but aromatase and breast cancer in vivo. Methods: Ten newly diagnosed postmeno- additional enzymes and translocators necessary for local synthesis pausal women with biopsy-confirmed breast cancer were adminis- are also found in classic estrogen target organs such as breast, tered 11C-vorozole intravenously, and PET emission data were brain, bone, and adipose tissue (3–6). Local synthesis and use of collected between 40 and 90 min after injection.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Aspects of the Usage of Antineoplastic and 1Mmunomodulating Agents in a Section of the Private Health Care Sector
    ASPECTS OF THE USAGE OF ANTINEOPLASTIC AND 1MMUNOMODULATING AGENTS IN A SECTION OF THE PRIVATE HEALTH CARE SECTOR Wilmarie Rheeders B. Pharm Dissertation submitted in Pharmacy Practice, School of Pharmacy at the Faculty of Health Sciences of the North-West University, Potchefstroom, in partial fulfilment of the requirements for the degree Magister Pharmaciae. Supervisor: Prof M.S. Lubbe Co-supervisor: Dr. J.L. Duminy Co-supervisor: Prof. M.P. Stander Potchefstroom November 2008 For all things are from Him, by Him, and for Him. Glory belongs to Him forever! Amen. (Rom. 11:36) ACKNOWLEDGEMENTS To my Lord and Father whom I love, all the Glory! He gave me the strength, insight and endurance to finish this study. 1 also want to express my sincere appreciation to the following people that have contributed to this dissertation: • To Professor M.S. Lubbe, in her capacity as supervisor of this dissertation, my appreciation for her expert supervision, advice and time she invested in this study. • To Dr. J.L Duminy, oncologist and co-supervisor, for all the useful advice, assistance and time he put aside in the interest of this dissertation. • To Professor M.P. Stander, in his capacity as co-supervisor of this study. • To Professor J.H.P. Serfontein, for his guidance, time, effort and advice. • To the Department of Pharmacy Practice as well as the NRF for the technical and financial support. • To Anne-Marie, thank you for your patience, time and continuous effort you put into the data. • To the Pharmacy Benefit Management company for providing the data for this dissertation.
    [Show full text]