Fitting and Extending Exponential Smoothing Models with Stan Slawek Smyl <
[email protected]> Qinqin Zhang <
[email protected]> International Symposium on Forecasting Riverside, California, USA, 2015 Fitting and Extending Exponential Smoothing Models with Stan Slawek Smyl, Qinqin Zhang Microsoft {slsmyl, qinzh}@microsoft.com Abstract. Time series forecasting is a fundamental arbitrary dynamics and estimating models numerically challenge to various industries like retail and finance. leveraging the power of computation. Most of the classical forecasting models, including regression, ARIMA, exponential smoothing, assume Among various probabilistic programming languages, that the characteristics of input data can be fully Stan (Stan Development Team 2015) is a relatively captured except for mean-zero Gaussian noise terms. mature and comprehensive option. It is a flexible However, this assumption is frequently invalid for programming tool which implements full Bayesian highly volatile data with heavy-tail distributions. statistical inference with Hamiltonian Markov Chain Analytical tractability is a big obstacle combating non- Monte Carlo. In Stan, models are specified in a Gaussian noise terms. But with Stan (http://mc- language with syntax and some conventions similar to stan.org), a probabilistic programming language a mix of R and C++. Then the models are translated to implementing full Bayesian statistical inference, C++ and compiled so that sampling can be executed. implementing innovative time series forecasting algorithms becomes easier. In this study, we discuss a Using Stan as a probabilistic programming tool has few extensions to Holt-Winters Double Exponential several benefits. First, with the interface package Smoothing algorithm including RStan (Stan Development Team 2015), users can easily 1) using a robust error distribution (Student) develop Stan codes combined with R codes using an R- 2) allowing trend and sigma to grow non-linearly with scripting environment.