Characterization of the Complete Chloroplast Genome of Arabis Stellari and Comparisons with Related Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Winter Memory Throughout the Plant Kingdom: Different Paths to Flowering1[OPEN]
Update on Vernalization Pathways Winter Memory throughout the Plant Kingdom: Different Paths to Flowering1[OPEN] Frédéric Bouché, Daniel P. Woods, and Richard M. Amasino* Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.) ORCID IDs: 0000-0002-8017-0071 (F.B.); 0000-0002-1498-5707 (D.P.W.); 0000-0003-3068-5402 (R.M.A.). Plants have evolved a variety of mechanisms to syn- developmental program that prevents flowering in young chronize flowering with their environment to optimize seedlings and promotes the transition to reproductive de- reproductive success. Many species flower in spring when velopmentinolderplants(e.g.Yuetal.,2015).Inmany the photoperiod increases and the ambient tempera- species adapted to temperate climates, the perception tures become warmer. Winter annuals and biennials have of seasonal changes also involves the acquisition of the evolved repression mechanisms that prevent the transition competence to flower in response to an extended cold to reproductive development in the fall. These repressive period, a process referred to as vernalization (e.g. Chouard, processes can be overcome by the prolonged cold of 1960; Preston and Sandve, 2013; Fig. 1A). In addition, some winter through a process known as vernalization. The species acquire floral competence when exposed to the memory of the past winter is sometimes stored by epige- shorter photoperiod of winter (Purvis and Gregory, 1937; netic chromatin remodeling processes that provide com- Wellensiek, 1985), but the molecular mechanisms control- petence to flower, and plants usually require additional ling the so-called “short-day vernalization” are still un- inductive signals to flower in spring. -
The First Chloroplast Genome Sequence of Boswellia Sacra, a Resin-Producing Plant in Oman
RESEARCH ARTICLE The First Chloroplast Genome Sequence of Boswellia sacra, a Resin-Producing Plant in Oman Abdul Latif Khan1, Ahmed Al-Harrasi1*, Sajjad Asaf2, Chang Eon Park2, Gun-Seok Park2, Abdur Rahim Khan2, In-Jung Lee2, Ahmed Al-Rawahi1, Jae-Ho Shin2* 1 UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman, 2 School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea a1111111111 * [email protected] (AAH); [email protected] (JHS) a1111111111 a1111111111 a1111111111 Abstract a1111111111 Boswellia sacra (Burseraceae), a keystone endemic species, is famous for the production of fragrant oleo-gum resin. However, the genetic make-up especially the genomic informa- tion about chloroplast is still unknown. Here, we described for the first time the chloroplast OPEN ACCESS (cp) genome of B. sacra. The complete cp sequence revealed a circular genome of 160,543 Citation: Khan AL, Al-Harrasi A, Asaf S, Park CE, bp size with 37.61% GC content. The cp genome is a typical quadripartite chloroplast struc- Park G-S, Khan AR, et al. (2017) The First ture with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) Chloroplast Genome Sequence of Boswellia sacra, and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed a Resin-Producing Plant in Oman. PLoS ONE 12 the presence of 114 unique genes with 83 protein-coding regions. The phylogenetic analysis (1): e0169794. doi:10.1371/journal.pone.0169794 revealed that the B. sacra cp genome is closely related to the cp genome of Azadirachta Editor: Xiu-Qing Li, Agriculture and Agri-Food indica and Citrus sinensis, while most of the syntenic differences were found in the non-cod- Canada, CANADA ing regions. -
Memory of the Vernalized State in Plants Including the Model Grass Brachypodium Distachyon
PERSPECTIVE ARTICLE published: 25 March 2014 doi: 10.3389/fpls.2014.00099 Memory of the vernalized state in plants including the model grass Brachypodium distachyon Daniel P.Woods1,2,3 ,Thomas S. Ream1,2 † and Richard M. Amasino1,2 * 1 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA 2 U.S. Department of Energy–Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA 3 Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA Edited by: Plant species that have a vernalization requirement exhibit variation in the ability to George Coupland, Max Planck “remember” winter – i.e., variation in the stability of the vernalized state. Studies in Society, Germany Arabidopsis have demonstrated that molecular memory involves changes in the chromatin Reviewed by: state and expression of the flowering repressor FLOWERING LOCUS C, and have revealed Paula Casati, Centro de Estudios Fotosinteticos – Consejo Nacional de that single-gene differences can have large effects on the stability of the vernalized state. In Investigaciones Científicas y Técnicas, the perennial Arabidopsis relative Arabis alpina, the lack of memory of winter is critical for its Argentina perennial life history. Our studies of flowering behavior in the model grass Brachypodium Iain Robert Searle, The University of Adelaide, Australia distachyon reveal extensive variation in the vernalization requirement, and studies of a particular Brachypodium accession that has a qualitative requirement for both cold exposure *Correspondence: Richard M. Amasino, Department of and inductive day length to flower reveal that Brachypodium can exhibit a highly stable Biochemistry, University of vernalized state. Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA Keywords: vernalization, flowering, Brachypodium, epigenetics, life history e-mail: [email protected] †Present address: Thomas S. -
Phylogenetic Position and Generic Limits of Arabidopsis (Brassicaceae)
PHYLOGENETIC POSITION Steve L. O'Kane, Jr.2 and Ihsan A. 3 AND GENERIC LIMITS OF Al-Shehbaz ARABIDOPSIS (BRASSICACEAE) BASED ON SEQUENCES OF NUCLEAR RIBOSOMAL DNA1 ABSTRACT The primary goals of this study were to assess the generic limits and monophyly of Arabidopsis and to investigate its relationships to related taxa in the family Brassicaceae. Sequences of the internal transcribed spacer region (ITS-1 and ITS-2) of nuclear ribosomal DNA, including 5.8S rDNA, were used in maximum parsimony analyses to construct phylogenetic trees. An attempt was made to include all species currently or recently included in Arabidopsis, as well as species suggested to be close relatives. Our ®ndings show that Arabidopsis, as traditionally recognized, is polyphyletic. The genus, as recircumscribed based on our results, (1) now includes species previously placed in Cardaminopsis and Hylandra as well as three species of Arabis and (2) excludes species now placed in Crucihimalaya, Beringia, Olimar- abidopsis, Pseudoarabidopsis, and Ianhedgea. Key words: Arabidopsis, Arabis, Beringia, Brassicaceae, Crucihimalaya, ITS phylogeny, Olimarabidopsis, Pseudoar- abidopsis. Arabidopsis thaliana (L.) Heynh. was ®rst rec- netic studies and has played a major role in un- ommended as a model plant for experimental ge- derstanding the various biological processes in netics over a half century ago (Laibach, 1943). In higher plants (see references in Somerville & Mey- recent years, many biologists worldwide have fo- erowitz, 2002). The intraspeci®c phylogeny of A. cused their research on this plant. As indicated by thaliana has been examined by Vander Zwan et al. Patrusky (1991), the widespread acceptance of A. (2000). Despite the acceptance of A. -
The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution
The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution Dissertation submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Liza Paola Ding born in Mosbach, Baden-Württemberg, Germany Oral examination: 22.12.2014 Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar Table of contents INTRODUCTION ............................................................................................................. 18 1 THE MUSTARD FAMILY ....................................................................................... 19 2 THE TRIBAL SYSTEM OF THE BRASSICACEAE ........................................... 22 3 CHALCONE SYNTHASE ........................................................................................ 23 PART 1: TROUBLE WITH THE OUTGROUP............................................................ 27 4 MATERIAL AND METHODS ................................................................................. 28 4.1 Experimental set-up ......................................................................................................................... 28 4.1.1 Plant material and data composition .............................................................................................. 28 4.1.2 DNA extraction and PCR amplification ........................................................................................ -
The Evolutionary Fate of Rpl32 and Rps16 Losses in the Euphorbia Schimperi (Euphorbiaceae) Plastome Aldanah A
www.nature.com/scientificreports OPEN The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome Aldanah A. Alqahtani1,2* & Robert K. Jansen1,3 Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identifed previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passiforaceae. An E. schimperi transcript of pt SOD-1- RPL32 confrmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passiforaceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passiforaceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales. -
PYK10 Myrosinase Reveals a Functional Coordination Between Endoplasmic Reticulum Bodies and Glucosinolates in Arabidopsis Thaliana
The Plant Journal (2017) 89, 204–220 doi: 10.1111/tpj.13377 PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana Ryohei T. Nakano1,2,3, Mariola Pislewska-Bednarek 4, Kenji Yamada5,†, Patrick P. Edger6,‡, Mado Miyahara3,§, Maki Kondo5, Christoph Bottcher€ 7,¶, Masashi Mori8, Mikio Nishimura5, Paul Schulze-Lefert1,2,*, Ikuko Hara-Nishimura3,*,#,k and Paweł Bednarek4,*,# 1Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Koln,€ Germany, 2Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Koln,€ Germany, 3Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, 4Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland, 5Department of Cell Biology, National Institute of Basic Biology, Okazaki 444-8585, Japan, 6Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA, 7Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany, and 8Ishikawa Prefectural University, Nonoichi, Ishikawa 834-1213, Japan Received 29 March 2016; revised 30 August 2016; accepted 5 September 2016; published online 19 December 2016. *For correspondence (e-mails [email protected]; [email protected]; [email protected]). #These authors contributed equally to this work. †Present address: Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland. ‡Present address: Department of Horticulture, Michigan State University, East Lansing, MI, USA. §Present address: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan. -
Chromosome‐Level Reference Genome of the Soursop (Annona Muricata
Received: 26 May 2020 | Revised: 5 February 2021 | Accepted: 8 February 2021 DOI: 10.1111/1755-0998.13353 RESOURCE ARTICLE Chromosome- level reference genome of the soursop (Annona muricata): A new resource for Magnoliid research and tropical pomology Joeri S. Strijk1,2,3 | Damien D. Hinsinger2,4 | Mareike M. Roeder5,6 | Lars W. Chatrou7 | Thomas L.P. Couvreur8 | Roy H.J. Erkens9 | Hervé Sauquet10 | Michael D. Pirie11 | Daniel C. Thomas12 | Kunfang Cao13 1Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Tungku Link, Brunei Darussalam 2Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos 3Guangxi Key Laboratory of Forest Ecology and Conservation, Biodiversity Genomics Team, Nanning, Guangxi, China 4Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris- Saclay, Évry, France 5Community Ecology and Conservation Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China 6Aueninstitut, Institute for Geography and Geoecology, Karlsruhe Institute of Technology, Rastatt, Germany 7Systematic and Evolutionary Botany Laboratory, Ghent University, Ghent, Belgium 8IRD, DIADE, Univ Montpellier, Montpellier, France 9Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands 10National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia 11Department of Natural History, -
The University of British Columbia
The University of British Columbia Department of Botany #3529 – 6270 University Boulevard Vancouver, B.C. Canada V6T 1Z4 Tel: (604) 822-2133 Fax: (604) 822-6089 March 14, 2019 BSA Council Dear Council Members, It is with great pleasure that I nominate Professor Richard Abbott to be a Corresponding Member of the Botanical Society of America. I view Professor Abbott as an international leader in the areas of plant hybridization and phylogeography. His work is notable for its high quality, thoroughness, and careful and nuanced interpretations of results. Also, included in this nomination package is a letter of support from Corresponding Member Dianne Edwards CBE FRS, who is a Distinguished Research Professor at Cardiff University, along with Richard’s CV. Below I highlight several of Prof. Abbott’s most important contributions, as well as the characteristics of his work that I particularly admire. Prof. Abbott is probably best known for his careful elucidation of the reticulate history of Senecio (ragworts and groundsels) of the British Isles. His studies of the Senecio system have combined careful analyses of historical plant distribution records in the UK, with data from ecological experiments, developmental genetics, and population genetic and genomic analyses. This multidisciplinary approach is powerful, and Prof. Abbot’s work has revealed several examples of plant speciation in real time (and there aren’t very many of these). Key findings include (1) the discovery and careful documentation of the homoploid hybrid origin of the Oxford -
Evolution of the Selfing Syndrome in Arabis Alpina (Brassicaceae)
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae) Tedder, Andrew ; Carleial, Samuel ; Gołębiewska, Martyna ; Kappel, Christian ; Shimizu, Kentaro K ; Stift, Marc DOI: https://doi.org/10.1371/journal.pone.0126618 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-111113 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Tedder, Andrew; Carleial, Samuel; Gołębiewska, Martyna; Kappel, Christian; Shimizu, Kentaro K; Stift, Marc (2015). Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae). PLoS ONE, 10(6):e0126618. DOI: https://doi.org/10.1371/journal.pone.0126618 RESEARCH ARTICLE Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae) Andrew Tedder1, Samuel Carleial2, Martyna Gołębiewska1, Christian Kappel3, Kentaro K. Shimizu1*, Marc Stift2* 1 Institute of Evolutionary Biology and Environmental studies, University of Zurich, Zurich, Switzerland, 2 Ecology, Department of Biology, University of Konstanz, Konstanz, Germany, 3 Institut für Biochemie und Biologie, Universität Potsdam, Potsdam-Golm, Germany * [email protected] (KKS); [email protected] (MS) Abstract Introduction OPEN ACCESS The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently co- incides with changes towards a floral morphology that optimises self-pollination, the selfing Citation: Tedder A, Carleial S, Gołębiewska M, Kappel C, Shimizu KK, Stift M (2015) Evolution of the syndrome. Population genetic studies have reported the existence of both outcrossing and Selfing Syndrome in Arabis alpina (Brassicaceae). -
A Guide to Frequent and Typical Plant Communities of the European Alps
- Alpine Ecology and Environments A guide to frequent and typical plant communities of the European Alps Guide to the virtual excursion in lesson B1 (Alpine plant biodiversity) Peter M. Kammer and Adrian Möhl (illustrations) – Alpine Ecology and Environments B1 – Alpine plant biodiversity Preface This guide provides an overview over the most frequent, widely distributed, and characteristic plant communities of the European Alps; each of them occurring under different growth conditions. It serves as the basic document for the virtual excursion offered in lesson B1 (Alpine plant biodiversity) of the ALPECOLe course. Naturally, the guide can also be helpful for a real excursion in the field! By following the road map, that begins on page 3, you can determine the plant community you are looking at. Communities you have to know for the final test are indicated with bold frames in the road maps. On the portrait sheets you will find a short description of each plant community. Here, the names of communities you should know are underlined. The portrait sheets are structured as follows: • After the English name of the community the corresponding phytosociological units are in- dicated, i.e. the association (Ass.) and/or the alliance (All.). The names of the units follow El- lenberg (1996) and Grabherr & Mucina (1993). • The paragraph “site characteristics” provides information on the altitudinal occurrence of the community, its topographical situation, the types of substrata, specific climate conditions, the duration of snow-cover, as well as on the nature of the soil. Where appropriate, specifications on the agricultural management form are given. • In the section “stand characteristics” the horizontal and vertical structure of the community is described. -
Divergence of Annual and Perennial Species in the Brassicaceae and the Contribution of Cis-Acting Variation at FLC Orthologues
Molecular Ecology (2017) 26, 3437–3457 doi: 10.1111/mec.14084 Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologues C. KIEFER,* E. SEVERING,* R. KARL,† S. BERGONZI,‡ M. KOCH,† A. TRESCH*§ and G. COUPLAND* *Max Planck Institute for Plant Breeding Research, Plant Developmental Biology, Carl-von-Linne Weg 10, 50829 Cologne, Germany, †Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, INF 345, 69120 Heidelberg, Germany, ‡Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands, §Cologne Biocenter, University of Cologne, Zulpicher€ Str. 47b, 50674 Cologne, Germany Abstract Variation in life history contributes to reproductive success in different environments. Divergence of annual and perennial angiosperm species is an extreme example that has occurred frequently. Perennials survive for several years and restrict the duration of reproduction by cycling between vegetative growth and flowering, whereas annuals live for 1 year and flower once. We used the tribe Arabideae (Brassicaceae) to study the divergence of seasonal flowering behaviour among annual and perennial species. In perennial Brassicaceae, orthologues of FLOWERING LOCUS C (FLC), a floral inhibi- tor in Arabidopsis thaliana, are repressed by winter cold and reactivated in spring con- ferring seasonal flowering patterns, whereas in annuals, they are stably repressed by cold. We isolated FLC orthologues from three annual and two perennial Arabis species and found that the duplicated structure of the A. alpina locus is not required for perenniality. The expression patterns of the genes differed between annuals and perennials, as observed among Arabidopsis species, suggesting a broad relevance of these patterns within the Brassicaceae.