In Silico Analysis of Bacterial Translation Factors Reveal Distinct Translation Event Specific Pi Values Soma Jana and Partha P

Total Page:16

File Type:pdf, Size:1020Kb

In Silico Analysis of Bacterial Translation Factors Reveal Distinct Translation Event Specific Pi Values Soma Jana and Partha P Jana and Datta BMC Genomics (2021) 22:220 https://doi.org/10.1186/s12864-021-07472-x RESEARCH ARTICLE Open Access In silico analysis of bacterial translation factors reveal distinct translation event specific pI values Soma Jana and Partha P. Datta* Abstract Background: Protein synthesis is a cellular process that takes place through the successive translation events within the ribosome by the event-specific protein factors, namely, initiation, elongation, release, and recycling factors. In this regard, we asked the question about how similar are those translation factors to each other from a wide variety of bacteria? Hence, we did a thorough in silico study of the translation factors from 495 bacterial sp., and 4262 amino acid sequences by theoretically measuring their pI and MW values that are two determining factors for distinguishing individual proteins in 2D gel electrophoresis in experimental procedures. Then we analyzed the output from various angles. Results: Our study revealed the fact that it’s not all same, or all random, but there are distinct orders and the pI values of translation factors are translation event specific. We found that the translation initiation factors are mainly basic, whereas, elongation and release factors that interact with the inter-subunit space of the intact 70S ribosome during translation are strictly acidic across bacterial sp. These acidic elongation factors and release factors contain higher frequencies of glutamic acids. However, among all the translation factors, the translation initiation factor 2 (IF2) and ribosome recycling factor (RRF) showed variable pI values that are linked to the order of phylogeny. Conclusions: From the results of our study, we conclude that among all the bacterial translation factors, elongation and release factors are more conserved in terms of their pI values in comparison to initiation and recycling factors. Acidic properties of these factors are independent of habitat, nature, and phylogeny of the bacterial species. Furthermore, irrespective of the different shapes, sizes, and functions of the elongation and release factors, possession of the strictly acidic pI values of these translation factors all over the domain Bacteria indicates that the acidic nature of these factors is a necessary criterion, perhaps to interact into the partially enclosed rRNA rich inter- subunit space of the translating 70S ribosome. Keywords: Ribosome, Translation, Translation factors, Isoelectric point, Molecular weight, Phylogeny * Correspondence: [email protected] Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB PIN 741246, India © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Jana and Datta BMC Genomics (2021) 22:220 Page 2 of 11 Background that the bacterial translational elongation and release The translation is a complex universal biological process factors have similar pI value distribution, and that was that takes place in a large macromolecular machine strictly acidic throughout the domain Bacteria. Irrespect- called ribosome in all living organisms. It is an energy- ive of the habitat, nature, or the phylogeny of the bacter- exhaustive cellular process. In Escherichia coli, 40% of ial species as well as irrespective of the different shapes, the total cellular energy is utilized by the translation sys- sizes, and functions of the elongation and release factors, tem [1]. With the help of specific protein factors and these factors had strictly acidic pI values. We believe, aminoacyl tRNAs, ribosomes carry out protein synthesis our study indicates that the charge distribution of these following the decoding of the genetic information from factors might play important roles in the fidelity of the mRNA in successive events, namely, initiation, elong- process of translation. ation, and termination (release and recycling). The pro- tein factors that are involved in the successive events are Results initiation factors (IF), elongation factors (EF), release fac- We studied 495 bacterial species throughout the domain tors (RF), and ribosome recycling factors (RRF). Here, of Bacteria. The habitats of these bacteria are very differ- the accurate coordination of every participant protein ent from each other. The nature of these bacteria in factor is necessary to perform the process successfully. terms of cell shape (coccus or bacillus), intracellular Based on several years of biochemical and structural bio- metabolic reactions (aerobic or anaerobic), and even the logical studies worldwide, fairly detailed knowledge of way they respond to the external environments (meso- the mechanisms of cellular protein synthesis is now philic or thermophilic or psychrophilic) are distinct [9]. known [2–4]. However, in the broad aspect, which char- Here, we studied the following bacterial phyla, such as acteristics of the translation factors i.e., IF, EF and RF Deinococcus-Thermus, Chlorobi, Actinobacteria, Firmi- are necessary to be conserved for the accuracy of the cutes, Chlamydiae, Fusobacteria, Spirochaetes, Chloro- universal process of protein synthesis among the differ- flexi, Tenericutes, Cyanobacteria, Bacteroidetes, ent kinds of organisms need to be investigated. Thermotogae, Acidobacteria, Aquificae, Caldiserica, In this study, we focused on the charge distribution (in Chrysiogenetes, Deferribacteres, Elusimicrobia, Fibrobac- terms of acidic and basic properties) of the translation teres, Gemmatimonadetes, Lentisphaerae, Nitrospirae, factors throughout the domain Bacteria to comprehend Planctomycetes, Thermodesulfobacteria, Verrucomicro- the importance of the influence of the charge distribu- bia, and Proteobacteria [10]. tion of these factors on their accommodation on the ribosome and thus in their functions during this process of translation. For this, we made use of the principle of pI and molecular weight value distribution of translation the 2D gel electrophoresis [5], whereby, we computed protein factors the pI values using the “Compute pI/Mw tool – In the process of translation, we found a unique pattern ExPASy” (https://web.expasy.org/compute_pi/) online of pI value distribution as depicted in Fig. 1a, (see Add- webserver. This web server calculates the pI values of itional file 1; Table S1). The initiation factors, IF1, and proteins using pK values of amino acids as defined in IF3 were strictly basic except IF2. Conversely, the elong- [6–8], which were determined by examining polypeptide ation and release factors were strictly acidic. On the migration in an immobilized pH gradient (between pH other hand, like IF2, RRF also showed a broad range of 4.5 to 7.3) gel environment with 9.2 M and 9.8 M urea at pI value distribution ranging from acidic to basic. All the 15 °C or 25 °C. In that study, the authors determined the four quartiles of initiation factor 1 (IF1) and initiation focusing positions of 29 polypeptides of known amino factor 3 (IF3) were above pI 7. The elongation factor Tu acid sequence within a narrow range of immobilized pH (EF-Tu), elongation factor G (EF-G), elongation factor 4 gradients i.e., between pH 4.5 to 7.3 under denaturing (EF-4), & elongation factor P (EF-P) and the release fac- conditions with 9.2 M and 9.8 M urea at 15 °C or 25 °C, tor 1 (RF1), release factor 2 (RF2), & release factor 3 respectively. They separately calculated the pI values of (RF3) had all the four quartiles in the acidic range. For those proteins from their amino acid sequences. The the comprehensive in silico study, along with the pI comparison of isoelectric points of the proteins calcu- values, we also studied the molecular weight (MW) lated from their amino acid sequences showed reliably value distribution of these translation protein factors good accuracy with the experimentally determined pl (Fig. 1b), (see Additional file 1; Table S1). Like pI values. The reliability of the tool is broad, except for the value distribution, the protein IF2 showed a wide range study of highly basic proteins and small proteins. As the of variations in MW value distribution as well (Fig. 1b). translational factors are not highly basic and also not too All the other proteins showed precise MW value distri- small, we believed our study was within the scope of the bution. A surprising observation is to be noted here that above mentioned web-based method. Our study revealed although RRF proteins showed a highly variable pI value Jana and Datta BMC Genomics (2021) 22:220 Page 3 of 11 Fig. 1 Box plot diagram
Recommended publications
  • Crystal Structure of a Translation Termination Complex Formed with Release Factor RF2
    Crystal structure of a translation termination complex formed with release factor RF2 Andrei Korosteleva,b,1, Haruichi Asaharaa,b,1,2, Laura Lancastera,b,1, Martin Laurberga,b, Alexander Hirschia,b, Jianyu Zhua,b, Sergei Trakhanova,b, William G. Scotta,c, and Harry F. Nollera,b,3 aCenter for Molecular Biology of RNA and Departments of bMolecular, Cell and Developmental Biology and cChemistry and Biochemistry, University of California, Santa Cruz, CA 95064 Contributed by Harry F. Noller, October 30, 2008 (sent for review October 22, 2008) We report the crystal structure of a translation termination com- and G530 of 16S rRNA, and recognized separately by interac- plex formed by the Thermus thermophilus 70S ribosome bound tions with Gln-181 and Thr-194. Stop codon recognition by RF1 with release factor RF2, in response to a UAA stop codon, solved also involves a network of interactions with other structural at 3 Å resolution. The backbone of helix ␣5 and the side chain of elements of RF1, including critical main-chain atoms and con- serine of the conserved SPF motif of RF2 recognize U1 and A2 of the served features of 16S rRNA (9). stop codon, respectively. A3 is unstacked from the first 2 bases, Many studies have implicated the conserved GGQ motif in contacting Thr-216 and Val-203 of RF2 and stacking on G530 of 16S domain 3, present in the release factors of all three primary rRNA. The structure of the RF2 complex supports our previous domains of life, in the hydrolysis reaction. Although the side proposal that conformational changes in the ribosome in response chain of the conserved glutamine has been proposed to play a to recognition of the stop codon stabilize rearrangement of the role in catalysis (10, 11), elimination of its side-chain amide switch loop of the release factor, resulting in docking of the group by mutation of this residue to alanine, for example, universally conserved GGQ motif in the PTC of the 50S subunit.
    [Show full text]
  • Amino Acid Specificity in Translation
    Opinion TRENDS in Biochemical Sciences Vol.30 No.12 December 2005 Amino acid specificity in translation Taraka Dale and Olke C. Uhlenbeck Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA Recent structural and biochemical experiments indicate For example, in the course of deducing the recognition that bacterial elongation factor Tu and the ribosomal rules of aaRSs, several amber-suppressor tRNA bodies A-site show specificity for both the amino acid and the were deliberately mutated such that they were amino- tRNA portions of their aminoacyl-tRNA (aa-tRNA) acylated by a different aaRS, and the resulting ‘identity- substrates. These data are inconsistent with the swapped’ tRNAs were shown to insert the new amino acid traditional view that tRNAs are generic adaptors in into protein [7,8]. In addition, suppressor tRNAs esterified translation. We hypothesize that each tRNA sequence with O30 different unnatural amino acids have been has co-evolved with its cognate amino acid, such that all successfully incorporated into protein [9]. Together, these aa-tRNAs are translated uniformly. data suggest that the translational apparatus lacks specificity for different amino acids, once they are Introduction esterified onto tRNA. The mechanism of protein synthesis is traditionally In a few isolated cases, however, the translation considered to have two phases with different specificities machinery seems to show specificity for the esterified towards the 20 amino acid side chains (Figure 1). In the amino acid. A prominent example occurs in the transami- first phase, each amino acid is specifically recognized by dation pathway, which is used as an alternative to GlnRS its cognate aminoacyl-tRNA synthetase (aaRS) and to produce Gln-tRNAGln in many bacteria and archaea esterified to the appropriate tRNA to form an aminoacyl- [10,11].
    [Show full text]
  • Structural Aspects of Translation Termination on the Ribosome
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship@UMMS University of Massachusetts Medical School eScholarship@UMMS RNA Therapeutics Institute Publications RNA Therapeutics Institute 2011-08-01 Structural aspects of translation termination on the ribosome Andrei A. Korostelev University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/rti_pubs Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, and the Therapeutics Commons Repository Citation Korostelev AA. (2011). Structural aspects of translation termination on the ribosome. RNA Therapeutics Institute Publications. https://doi.org/10.1261/rna.2733411. Retrieved from https://escholarship.umassmed.edu/rti_pubs/33 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in RNA Therapeutics Institute Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. REVIEW Structural aspects of translation termination on the ribosome ANDREI A. KOROSTELEV1 RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA ABSTRACT Translation of genetic information encoded in messenger RNAs into polypeptide sequences is carried out by ribosomes in all organisms. When a full protein is synthesized, a stop codon positioned in the ribosomal A site signals termination of translation and protein release. Translation termination depends on class I release factors. Recently, atomic-resolution crystal structures were determined for bacterial 70S ribosome termination complexes bound with release factors RF1 or RF2.
    [Show full text]
  • From Thermus Thermophilus HB8
    Crystal Structure of Elongation Factor P from Thermus thermophilus HB8 Genetic information encoded in messenger RNA molecules. Several proteins were found to possess is translated into protein by the ribosome, which is a domain(s) similar to a portion of tRNA, by which they large ribonucleoprotein complex. It has been clarified interact with the ribosome. The C-terminal domain of that diverse proteins called translation factors and elongation factor G (EF-G) has a shape similar to that RNAs are involved in genetic translation. Translation of the anticodon-stem loop in the elongation factor Tu elongation factor P (EF-P) is one of the translation (EF-Tu)• tRNA• GDPNP ternary complex. Release factors and stimulates the first peptidyl transferase factor 2 (RF2) and ribosome recycling factor (RRF) activity of the ribosome [1]. EF-P is conserved in were also found to possess a protruding domain, by bacteria, and is essential for their viability. Eukarya which they are believed to bind to the ribosome A site and Archaea have an EF-P homologue, eukaryotic [3]. In contrast with these factors, the entire structure initiation factor 5A (eIF-5A). of the EF-P mimics the overall shape of the tRNA We succeeded in the determination of the crystal molecule (Fig. 2). In addition, it is notable that EF-P is structure of EF-P from Thermus thermophilus HB8 at an acidic protein and most of its surface is negatively 1.65 Å resolution, using beamline BL45PX [2]. The charged. The overall tRNA-like shape of the EF-P crystallographic asymmetric unit contains two nearly molecule and the charge distribution seem to be identical EF-P monomers (Fig.
    [Show full text]
  • EF-Tu and Rnase E Are Functionally Connected
    Till min familj List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Hammarlöf, D.L., Hughes, D. (2008) Mutants of the RNA- processing enzyme RNase E reverse the extreme slow-growth phenotype caused by a mutant translation factor EF-Tu. Molecular Microbiology, 70(5), 1194-1209 II †Bergman, J., †Hammarlöf, D.L., Hughes D. (2011) Reducing ppGpp levels rescues the extreme growth defect of mutant EF-Tu. Manuscript III Hammarlöf, D.L., Liljas, L., Hughes, D. (2011) Temperature- sensitive mutants of RNase E in Salmonella enterica. Journal of Bacteriology. In press IV †Hammarlöf, D.L., †Bergman, J., Hughes, D. (2011) Extragenic suppressors of RNase E. Manuscript †These authors contributed equally. Reprints were made with permission from the respective publishers. Contents Introduction ................................................................................................... 11 Bacterial growth ....................................................................................... 11 Translation in bacteria .............................................................................. 12 The ribosome ....................................................................................... 12 The translation cycle ............................................................................ 13 Elongation Factor Tu ................................................................................ 14 The most abundant protein in the cell .................................................
    [Show full text]
  • Archaeal Translation Initiation Revisited: the Initiation Factor 2 and Eukaryotic Initiation Factor 2B ␣-␤-␦ Subunit Families
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 3726–3730, March 1998 Evolution Archaeal translation initiation revisited: The initiation factor 2 and eukaryotic initiation factor 2B a-b-d subunit families NIKOS C. KYRPIDES* AND CARL R. WOESE Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences, MC 110, 407 S. Goodwin, Urbana, IL 61801 Contributed by Carl R. Woese, December 31, 1997 ABSTRACT As the amount of available sequence data bacterial and eukaryotic translation initiation mechanisms, increases, it becomes apparent that our understanding of although mechanistically generally similar, were molecularly translation initiation is far from comprehensive and that unrelated and so had evolved independently. The Methano- prior conclusions concerning the origin of the process are coccus jannaschii genome (7–9), which gave us our first wrong. Contrary to earlier conclusions, key elements of trans- comprehensive look at the componentry of archaeal transla- lation initiation originated at the Universal Ancestor stage, for tion initiation, revealed that archaeal translation initiation homologous counterparts exist in all three primary taxa. showed considerable homology with eukaryotic initiation, Herein, we explore the evolutionary relationships among the which, if anything, reinforced the divide between bacterial components of bacterial initiation factor 2 (IF-2) and eukary- initiation and that seen in the other domains. We recently have otic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in shown, however, that bacterial translation initiation factor 1 introducing the initiator tRNA into the translation mecha- (IF-1), contrary to previously accepted opinion, is related in nism and performing the first step in the peptide chain sequence to its eukaryotic/archaeal (functional) counterpart, elongation cycle.
    [Show full text]
  • Ribosomal Initiation Complex-Driven Changes in the Stability and Dynamics of Initiation Factor 2 Regulate the Fidelity of Translation Initiation
    Article Ribosomal Initiation Complex-Driven Changes in the Stability and Dynamics of Initiation Factor 2 Regulate the Fidelity of Translation Initiation Jiangning Wang, Kelvin Caban and Ruben L. Gonzalez Jr. Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA Correspondence to Ruben L. Gonzalez: [email protected] http://dx.doi.org/10.1016/j.jmb.2014.12.025 Edited by S. A. Woodson Abstract Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex.
    [Show full text]
  • Initiation Factor Eif5b Catalyzes Second GTP-Dependent Step in Eukaryotic Translation Initiation
    Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation Joon H. Lee*†, Tatyana V. Pestova†‡§, Byung-Sik Shin*, Chune Cao*, Sang K. Choi*, and Thomas E. Dever*¶ *Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716; ‡Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn, NY 11203; and §A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Edited by Harry F. Noller, University of California, Santa Cruz, CA, and approved October 31, 2002 (received for review September 19, 2002) Initiation factors IF2 in bacteria and eIF2 in eukaryotes are GTPases In addition, when nonhydrolyzable GDPNP was substituted Met that bind Met-tRNAi to the small ribosomal subunit. eIF5B, the for GTP, eIF5B catalyzed subunit joining; however, the factor eukaryotic ortholog of IF2, is a GTPase that promotes ribosomal was unable to dissociate from the 80S ribosome after subunit subunit joining. Here we show that eIF5B GTPase activity is re- joining (7). quired for protein synthesis. Mutation of the conserved Asp-759 in To dissect the function of the eIF5B G domain and test the human eIF5B GTP-binding domain to Asn converts eIF5B to an model that two GTP molecules are required in translation XTPase and introduces an XTP requirement for subunit joining and initiation, we mutated conserved residues in the eIF5B G translation initiation. Thus, in contrast to bacteria where the single domain and tested the function of the mutant proteins in GTPase IF2 is sufficient to catalyze translation initiation, eukaryotic translation initiation.
    [Show full text]
  • Ef-G:Trna Dynamics During the Elongation Cycle of Protein Synthesis
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis Rong Shen University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons Recommended Citation Shen, Rong, "Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis" (2015). Publicly Accessible Penn Dissertations. 1131. https://repository.upenn.edu/edissertations/1131 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1131 For more information, please contact [email protected]. Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis Abstract During polypeptide elongation cycle, prokaryotic elongation factor G (EF-G) catalyzes the coupled translocations on the ribosome of mRNA and A- and P-site bound tRNAs. Continued progress has been achieved in understanding this key process, including results of structural, ensemble kinetic and single- molecule studies. However, most of work has been focused on the pre-equilibrium states of this fast process, leaving the real time dynamics, especially how EF-G interacts with the A-site tRNA in the pretranslocation complex, not fully elucidated. In this thesis, the kinetics of EF-G catalyzed translocation is investigated by both ensemble and single molecule fluorescence resonance energy transfer studies to further explore the underlying mechanism. In the ensemble work, EF-G mutants were designed and expressed successfully. The labeled EF-G mutants show good translocation activity in two different assays. In the smFRET work, by attachment of a fluorescent probe at position 693 on EF-G permits monitoring of FRET efficiencies to sites in both ribosomal protein L11 and A-site tRNA.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION eIF4E (human recombinant) Item No. 15137 Overview and Properties Synonyms: eIF-4F 25 kDa subunit, Eukaryotic Translation Initiation Factor 4E, mRNA Cap-binding Protein Source: Recombinant protein expressed in E. coli Amino Acids: 2-217 (full length) Uniprot No.: P06730 Molecular Weight: 25.2 kDa Storage: -80°C (as supplied) Stability: ≥1 year Purity: batch specific (≥55% estimated by SDS-PAGE) Supplied in: 20 mM HEPES, pH 7.5, containing 100 mM potassium chloride, 2 mM DTT, and 10% glycerol Protein Concentration: batch specific mg/ml Image 1 2 3 4 250 kDa · · · · · · · 150 kDa · · · · · · · 100 kDa · · · · · · · 75 kDa · · · · · · · 50 kDa · · · · · · · 37 kDa · · · · · · · 25 kDa · · · · · · · 20 kDa · · · · · · · 15 kDa · · · · · · · Lane 1: MW Markers Lane 2: eIF4E (human recombinant) (4 µg) Lane 3: eIF4E (human recombinant) (2 µg) Lane 4: eIF4E (human recombinant) (1 µg) Representaõve gel image shown; actual purity may vary between each batch. WARNING CAYMAN CHEMICAL THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 1180 EAST ELLSWORTH RD SAFETY DATA ANN ARBOR, MI 48108 · USA This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution. PHONE: [800] 364-9897 WARRANTY AND LIMITATION OF REMEDY [734] 971-3335 Buyer agrees to purchase the material subject to Cayman’s Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.
    [Show full text]
  • Translation Termination and Ribosome Recycling in Eukaryotes
    Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Translation Termination and Ribosome Recycling in Eukaryotes Christopher U.T. Hellen Department of Cell Biology, State University of New York, Downstate Medical Center, New York, New York 11203 Correspondence: [email protected] Termination of mRNA translation occurs when a stop codon enters the A site of the ribosome, and in eukaryotes is mediated by release factors eRF1 and eRF3, which form a ternary eRF1/ eRF3–guanosine triphosphate (GTP) complex. eRF1 recognizes the stop codon, and after hydrolysis of GTP by eRF3, mediates release of the nascent peptide. The post-termination complex is then disassembled, enabling its constituents to participate in further rounds of translation. Ribosome recycling involves splitting of the 80S ribosome by the ATP-binding cassette protein ABCE1 to release the 60S subunit. Subsequent dissociation of deacylated transfer RNA (tRNA) and messenger RNA (mRNA) from the 40S subunit may be mediated by initiation factors (priming the 40S subunit for initiation), by ligatin (eIF2D) or by density- regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT1). These events may be subverted by suppression of termination (yielding carboxy-terminally extended read- through polypeptides) or by interruption of recycling, leading to reinitiation of translation near the stop codon. OVERVIEW OF TRANSLATION post-termination complex (post-TC) is recycled TERMINATION AND RECYCLING bysplittingoftheribosome,whichismediatedby ABCE1. This step is followed by release of de- ranslation is a cyclical process that comprises acylated tRNA and messenger RNA (mRNA) Tinitiation, elongation, termination, and ribo- from the 40S subunit via redundant pathways some recycling stages (Jackson et al.
    [Show full text]