Associahedron
Associahedron Jean-Louis Loday CNRS, Strasbourg April 23rd, 2005 Clay Mathematics Institute 2005 Colloquium Series Polytopes 7T 4 × 7TTTT 4 ×× 77 TT 44 × 7 simplex 4 ×× 77 44 × 7 ··· 4 ×× 77 ×× 7 o o ooo ooo cube o o ··· oo ooo oo?? ooo ?? ? ?? ? ?? OOO OO ooooOOO oooooo OO? ?? oOO ooo OOO o OOO oo?? permutohedron OOooo ? ··· OO o ? O O OOO ooo ?? OOO o OOO ?? oo OO ?ooo n = 2 3 ··· Permutohedron := convex hull of (n+1)! points n+1 (σ(1), . , σ(n + 1)) ∈ R Parenthesizing X= topological space with product (a, b) 7→ ab Not associative but associative up to homo- topy (ab)c • ) • a(bc) With four elements: ((ab)c)d H jjj HH jjjj HH jjjj HH tjj HH (a(bc))d HH HH HH HH H$ vv (ab)(cd) vv vv vv vv (( ) ) TTT vv a bc d TTTT vv TTT vv TTTz*vv a(b(cd)) We suppose that there is a homotopy between the two composite paths, and so on. Jim Stasheff Staheff’s result (1963): There exists a cellular complex such that – vertices in bijection with the parenthesizings – edges in bijection with the homotopies – 2-cells in bijection with homotopies of com- posite homotopies – etc, and which is homeomorphic to a ball. Problem: construct explicitely the Stasheff com- plex in any dimension. oo?? ooo ?? ?? ?? • OOO OO n = 0 1 2 3 Planar binary trees (see R. Stanley’s notes p. 189) Planar binary trees with n + 1 leaves, that is n internal vertices: n o ? ?? ? ?? ?? ?? Y0 = { | } ,Y1 = ,Y2 = ? , ? , ( ) ? ? ? ? ? ? ? ? ? ? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ? ?? ? Y3 = ? , ? , ? , ? , ? . Bijection between planar binary trees and paren- thesizings: x0 x1 x2 x3 x4 RRR ll ll RRR ll RRlRll lll RRlll RRR lll lll lRRR lll RRR lll RRlll (((x0x1)x2)(x3x4)) The notion of grafting s t 3 33 t ∨ s = 3 Associahedron n To t ∈ Yn we associate M(t) ∈ R : n M(t) := (a1b1, ··· , aibi, ··· , anbn) ∈ R ai = # leaves on the left side of the ith vertex bi = # leaves on the right side of the ith vertex Examples: ? ? ?? ?? ?? ?? M( ) = (1),M ? = (1, 2),M ? = (2, 1), ? ? ? ?? ?? ?? ?? M ? = (1, 2, 3),M ? = (1, 4, 1).
[Show full text]