Teleios Fp7-257662

Total Page:16

File Type:pdf, Size:1020Kb

Teleios Fp7-257662 TELEIOS FP7-257662 Deliverable D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of MonetDB - Phase II Konstantina Bereta, Kallirroi Dogani, George Garbis, Stella Giannakopoulou, Manolis Koubarakis, Kostis Kyzirakos, Charalampos Nikolaou, Michael Sioutis, Panayiotis Smeros, Bakogiannis Dimitrios, Foufoulas Ioannis, Smaragdakis Ioannis, and Consortium Members March 22, 2013 Status: Final Scheduled Delivery Date: 28 February, 2013 TELEIOS FP7-257662 Executive Summary In this deliverable we present the second phase of the implementation of our temporal and spatial extensions of RDF and SPARQL, called stRDF, RDFi and stSPARQL, in the system Strabon. This follows deliverable D4.1., in which we documented the first implementation phase of the sys- tem Strabon. First, we present the valid time dimension of the data model stRDF and the query language stSPARQL and their implementation in Strabon. The valid time functionality, together with the geospatial features of Strabon, make Strabon the first spatio-temporal RDF store with many fea- tures and excellent performance as shown by our experimental evaluation. Second, we investigate the problem of extending existing relational database systems with reason- ing capabilities for incomplete spatial information. In this context, we implement a well-known algorithm for checking the consistency of RCC-8 constraint networks in PostgreSQL and MonetDB and contrast it with the state of the art qualitative spatial reasoners. We have chosen these two systems since these are currently the backends supported by Strabon. Our ultimate goal here is to prepare the technological ground for developing scalable query processing algorithms for the RDFi framework on top of our geospatial RDF store Strabon. The same tehcnologies can be used to enable query processing for the topology vocabulary extension of GeoSPARQL in Strabon. D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of i MonetDB - Phase II TELEIOS FP7-257662 Document Information Contract Number FP7-257662 Acronym TELEIOS Full title TELEIOS: Virtual Observatory Infrastructure for Earth Observation Data Project URL http://www.earthobservatory.eu/ EU Project Officer Francesco Barbato Deliverable Number D4.2 Name An implementation of a temporal and spatial extension of RDF and SPARQL on top of Mon- etDB - Phase II Task Number T4.2 Name Query processing and optimization for a tem- poral and spatial extension of RDF and SPARQL on top of MonetDB - phase II: in- definite geospatial information Work package Number WP4 Date of delivery Contract M30 (Feb. 2013) Actual 23 February 2013 Status Draft Final Nature Prototype2 Report2 Distribution Type Public 2Restricted 2 Responsible Partner NKUA2 2 QA Partner CWI Contact Person Manolis Koubarakis Email [email protected] Phone +30 210 727 Fax +30 210 727 5213 5214 D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of ii MonetDB - Phase II TELEIOS FP7-257662 Project Information This document is part of a research project funded by the IST Programme of the Commission of the European Communities as project number FP7-257662. The Beneficiaries in this project are: Partner Acronym Contact National and Kapodistrian University NKUA Prof. Manolis Koubarakis of Athens National and Kapodistrian University of Department of Informatics and Athens Telecommunications Department of Informatics and Telecommu- nications Panepistimiopolis, Ilissia, GR-15784 Athens, Greece Email: ([email protected]) Tel: +30 210 7275213, Fax: +30 210 7275214 Fraunhofer Institute for Computer Fraunhofer Dr. Eva Klien Graphic Research Fraunhofer Institute for Computer Graphic Research Fraunhofer Strasse 5, D-64283 Darmstadt, Germany Email: ([email protected]) Tel: +49 6151 155 412, Fax: +49 6151 155 444 German Aerospace Center DLR Prof. Mihai Datcu The Remote Sensing Technology In- German Aerospace Center stitute The Remote Sensing Technology Institute Photogrammetry and Image Analysis Oberpfaffenhofen, D-82234 Department Wessling, Germany Image Analysis Team Email: ([email protected]) Tel: +49 8153 28 1388, Fax: +49 8153 28 1444 Stichting Centrum voor Wiskunde en CWI Prof. Martin Kersten Informatica Stichting Centrum voor Wiskunde en Infor- Database Architecture Group matica P.O. Box 94097, NL-1090 GB Amsterdam, Netherlands Email: ([email protected]) Tel: +31 20 5924066, Fax: +31 20 5924199 National Observatory of Athens NOA Dr. Charis Kontoes Institute for Space Applications and National Observatory of Athens Remote Sensing Institute for Space Applications and Remote Sensing Vas. Pavlou and I. Metaxa, GR 152 36 Athens, Greece Email: ([email protected]) Tel: +30 210 8109186, Fax: +30 210 6138343 Advanced Computer Systems A.C.S ACS Mr. Ugo Di Giammatteo S.p.A Advanced Computer Systems A.C.S S.p.A Via Della Bufalotta 378, RM-00139 Rome, Italy Email: ([email protected]) Tel: +39 06 87090944, Fax: +39 06 87201502 D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of iii MonetDB - Phase II TELEIOS FP7-257662 Contents 1 Introduction 1 2 Representing and querying the valid time of triples in Strabon3 2.1 Valid time representation in the data model stRDF..................4 2.2 Querying valid times using the query language stSPARQL..............5 2.3 Implementation of valid time support in Strabon...................8 2.4 Evaluation.........................................9 2.5 Related Work....................................... 13 3 Database Techniques for Incomplete Spatial Information 15 3.1 Querying Incomplete Spatial Information....................... 15 3.2 Preliminaries....................................... 19 3.2.1 Constraint Networks and Relation Algebra.................. 19 3.2.2 Composition and Weak Composition...................... 20 3.2.3 Path Consistency and Algebraic Closure.................... 21 3.2.4 Varieties of k-consistency............................ 21 3.3 Qualitative Spatial Reasoning.............................. 21 3.3.1 The Region Connection Calculus........................ 22 3.3.2 Path Consistency Algorithm........................... 23 3.4 State of the Art Reasoners for the RCC-8 Calculus.................. 23 3.4.1 Renz’s RCC-8 Solver............................... 24 3.4.2 PelletSpatial................................... 24 3.4.3 Generic Qualitative Reasoner.......................... 25 3.4.4 PyRCC8...................................... 25 3.5 Enabling RCC-8 Reasoning in a Database....................... 26 3.5.1 Transferring Renz’s solver to MonetDB.................... 26 3.5.2 The Path Consistency Algorithm as a SQL program............. 27 3.5.3 Implementation of an RCC-8 module in MonetDB.............. 31 3.6 Experimental Evaluation................................. 31 3.6.1 Hardware setup.................................. 34 3.6.2 Datasets...................................... 34 3.6.3 Evaluation.................................... 37 4 Conclusions 40 A Instructions for installing and using the temporal component of Strabon 41 A.1 Instructions for installing and using the temporal component of Strabon...... 41 B Instructions for running the implementations of Chapter 3 43 B.1 Instructions to run Renz’s code in MonetDB...................... 43 B.2 Instructions to run the SQL implementation in MonetDB.............. 45 B.3 Instructions to run the SQL implementation in PostgreSQL............. 47 B.4 Instructions to run the implementation of the RCC-8 module in MonetDB..... 48 B.5 Extensions to MonetDB................................. 49 C Efficient Algorithms for Checking the Consistency of Chordal RCC-8 Networks 50 D Incomplete Information in RDF 83 D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of iv MonetDB - Phase II TELEIOS FP7-257662 List of Figures 2.1 The datatypes of stRDF.................................5 2.2 Architecture of the system Strabon enhanced with valid time support.......8 2.3 Query response time with respect dataset size..................... 11 3.1 The relations of RCC-8................................. 23 3.2 Path consistency algorithm as SQL program in MonetDB.............. 32 3.3 Path consistency algorithm as SQL program in PostgreSQL............. 33 3.4 Performance of consistency checking for the admingeo RDF dataset......... 37 3.5 Degree distributions of various datasets........................ 38 3.6 Number of edges grouped by type for various datasets................ 39 B.1 File wiki.csp ....................................... 44 B.2 Creation of schema RCC8 and table R .......................... 44 B.3 Script 01_create_R.sql ................................. 45 B.4 Script 02_create_rcc8-env.sql ............................ 46 B.5 Script verb03_composition-table_copy-into.sql ................. 46 B.6 Script wiki.sql ..................................... 47 B.7 Script run_rcc8pc.mal ................................. 49 D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of v MonetDB - Phase II TELEIOS FP7-257662 List of Tables 2.1 Composition of the GovTrack datasets in valid time representations........ 11 2.2 System performance in experiment 2.......................... 12 2.3 System performance in experiment 3.......................... 12 3.1 Definition of the various relations of RCC. Relations in bold are included in RCC-8 22 3.2 Composition of RCC-8 relations............................. 24 3.3 Encoding of RCC-8 relations.............................. 28 3.4 Integer encoding of objects
Recommended publications
  • Multiple-Aspect Analysis of Semantic Trajectories
    Konstantinos Tserpes Chiara Renso Stan Matwin (Eds.) Multiple-Aspect Analysis LNAI 11889 of Semantic Trajectories First International Workshop, MASTER 2019 Held in Conjunction with ECML-PKDD 2019 Würzburg, Germany, September 16, 2019 Proceedings Lecture Notes in Artificial Intelligence 11889 Subseries of Lecture Notes in Computer Science Series Editors Randy Goebel University of Alberta, Edmonton, Canada Yuzuru Tanaka Hokkaido University, Sapporo, Japan Wolfgang Wahlster DFKI and Saarland University, Saarbrücken, Germany Founding Editor Jörg Siekmann DFKI and Saarland University, Saarbrücken, Germany More information about this series at http://www.springer.com/series/1244 Konstantinos Tserpes • Chiara Renso • Stan Matwin (Eds.) Multiple-Aspect Analysis of Semantic Trajectories First International Workshop, MASTER 2019 Held in Conjunction with ECML-PKDD 2019 Würzburg, Germany, September 16, 2019 Proceedings Editors Konstantinos Tserpes Chiara Renso Harokopio University ISTI-CNR Athens, Greece Pisa, Italy Stan Matwin Dalhousie University Halifax, NS, Canada ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Artificial Intelligence ISBN 978-3-030-38080-9 ISBN 978-3-030-38081-6 (eBook) https://doi.org/10.1007/978-3-030-38081-6 LNCS Sublibrary: SL7 – Artificial Intelligence © The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Spatiotemporal Data Mining: Issues, Tasks And
    International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012 SPATIOTEMPORAL DATA MINING : ISSUES , TASKS AND APPLICATIONS K.Venkateswara Rao 1, A.Govardhan 2 and K.V.Chalapati Rao 1 1Department of Computer Science and Engineering, CVR College of Engineering, Ibrahimpatnam RR District, Andhra Pradesh, India [email protected] [email protected] 2JNTUH, Hyderabad, Andhra Pradesh, India [email protected] ABSTRACT Spatiotemporal data usually contain the states of an object, an event or a position in space over a period of time. Vast amount of spatiotemporal data can be found in several application fields such as traffic management, environment monitoring, and weather forecast. These datasets might be collected at different locations at various points of time in different formats. It poses many challenges in representing, processing, analysis and mining of such datasets due to complex structure of spatiotemporal objects and the relationships among them in both spatial and temporal dimensions. In this paper, the issues and challenges related to spatiotemporal data representation, analysis, mining and visualization of knowledge are presented. Various kinds of data mining tasks such as association rules, classification clustering for discovering knowledge from spatiotemporal datasets are examined and reviewed. System functional requirements for such kind of knowledge discovery and database structure are discussed. Finally applications of spatiotemporal data mining are presented. KEYWORDS Spatiotemporal data mining, spatiotemporal data mining issues, spatiotemporal data mining tasks, spatiotemporal data mining applications 1. INTRODUCTION A spatiotemporal object can be defined as an object that has at least one spatial and one temporal property. The spatial properties are location and geometry of the object.
    [Show full text]
  • A Workbench for Advanced Database Implementation and Benchmarking Valliappan Narayanan Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2009 A workbench for advanced database implementation and benchmarking Valliappan Narayanan Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Computer Sciences Commons Recommended Citation Narayanan, Valliappan, "A workbench for advanced database implementation and benchmarking" (2009). Graduate Theses and Dissertations. 10667. https://lib.dr.iastate.edu/etd/10667 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A workbench for advanced database implementation and benchmarking by Valliappan Narayanan A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Computer Science Program of Study Committee: Shashi K. Gadia, Major Professor Johnny S. Wong Arun K. Somani Iowa State University Ames, Iowa 2009 Copyright © Valliappan Narayanan, 2009. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES . vi ABSTRACT . vii CHAPTER 1. INTRODUCTION . 1 1.1. XML in our implementation . 1 1.2. Introduction to CanstoreX . 3 1.3. Query Engine . 4 1.4. Parametric Data Model. 5 1.4.1. TempDB: a prototype for a temporal database . 5 1.4.2. NC-94: A prototype for spatiotemporal database . 6 1.5. Files, command-based paradigm, and a common GUI . 6 1.6. Contributions under the current project .
    [Show full text]
  • Spatiotemporal Load-Analysis Model for Electric Power Distribution Facilities Using Consumer Meter-Reading Data
    736 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 26, NO. 2, APRIL 2011 Spatiotemporal Load-Analysis Model for Electric Power Distribution Facilities Using Consumer Meter-Reading Data Jin-Ho Shin, Bong-Jae Yi, Young-Il Kim, Heon-Gyu Lee, and Keun Ho Ryu, Member, IEEE Abstract—The load analysis for the distribution system and the power market requires exploring more progressive and ef- facilities has relied on measurement equipment. Moreover, load ficient system operation to expand social welfare and to reduce monitoring incurs huge costs in terms of installation and main- the electricity bill. tenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 min using meter-reading Even though massive investments are made in new distribu- data that can be obtained from a power consumer every 15 min or tion lines and in the operation of equipment, an imbalance in a month even without setting up any measuring equipment. After power-supply equipment, such as power outages due to exces- the data warehouse is constructed by interfacing the legacy system sive investment or a lack of investment, low-voltage areas, and required for the load calculation, the relationship between the unused power equipment are predicted depending on the area. distribution system and the power consumer is established. Once the load pattern is forecasted by applying a clustering and clas- This problem stems from the considerable difficulty in checking sification algorithm of temporal data-mining techniques for the the load which changes every moment, checking the section power customer who is not involved in automatic meter reading, with the maximum load of the distribution line, and checking a single-line diagram per feeder is created, and power-flow cal- the equipment/load information of the individual transformer.
    [Show full text]
  • The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: a European Perspective
    International Journal of Geo-Information Article The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: A European Perspective Hartmut Müller 1,* and Marije Louwsma 2 1 School of Technology—Geoinformatics and Surveying, Mainz University of Applied Sciences, D-55118 Mainz, Germany 2 Cadastre, Land Registry and Mapping Agency, 7300 GH Apeldoorn, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: The Covid-19 pandemic put a heavy burden on member states in the European Union. To govern the pandemic, having access to reliable geo-information is key for monitoring the spatial distribution of the outbreak over time. This study aims to analyze the role of spatio-temporal information in governing the pandemic in the European Union and its member states. The European Nomenclature of Territorial Units for Statistics (NUTS) system and selected national dashboards from member states were assessed to analyze which spatio-temporal information was used, how the information was visualized and whether this changed over the course of the pandemic. Initially, member states focused on their own jurisdiction by creating national dashboards to monitor the pandemic. Information between member states was not aligned. Producing reliable data and timeliness reporting was problematic, just like selecting indictors to monitor the spatial distribution and intensity of the outbreak. Over the course of the pandemic, with more knowledge about the virus and its characteristics, interventions of member states to govern the outbreak were better aligned Citation: Müller, H.; Louwsma, M. at the European level. However, further integration and alignment of public health data, statistical The Role of Spatio-Temporal Information to Govern the COVID-19 data and spatio-temporal data could provide even better information for governments and actors Pandemic: A European Perspective.
    [Show full text]
  • Spatial Data Extension for Cassandra Nosql Database
    Ben Brahim et al. J Big Data (2016) 3:11 DOI 10.1186/s40537-016-0045-4 RESEARCH Open Access Spatial data extension for Cassandra NoSQL database Mohamed Ben Brahim1* , Wassim Drira1, Fethi Filali1 and Noureddine Hamdi2 *Correspondence: [email protected] Abstract 1 Qatar Mobility Innovations The big data phenomenon is becoming a fact. Continuous increase of digitization Center, Qatar Science and Technology Park, and connecting devices to Internet are making current solutions and services smarter, 210531 Doha, Qatar richer and more personalized. The emergence of the NoSQL databases, like Cassandra, Full list of author information with their massive scalability and high availability encourages us to investigate the is available at the end of the article management of the stored data within such storage system. In our present work, we harness the geohashing technique to enable spatial queries as extension to Cassandra query language capabilities while preserving the native syntax. The developed frame- work showed the feasibility of this approach where basic spatial queries are under- pinned and the query response time is reduced by up to 70 times for a fairly large area. Keywords: Big data, Spatial query, Geohash, Cassandra DB, NoSQL databases Background The proliferation of mobile applications and the widespread of hardware sensing devices increase the streamed data towards the hosting data-centers. This increase causes a flooding of data. Taking benefits from these massive dataset stores is a key point in cre- ating deep insights for analysts in order to enhance system productivity and to capture new business opportunities. The inter-connected systems are sweeping almost all sec- tors forming what’s called today Internet of Things.
    [Show full text]
  • Issue 8, April 2020
    Issue 8, April 2020 INDEX Sl.no Title Page.no 1 Insight into Temporal and Spatial Database. 1 2 Hadoop Database. 2 3 Orient Db. 3 4 Oracle Autonomous Database. 4 5 Cloud Database. 6 6 Postgresql. 8 7 Data mining. 9 8 Mongo Db 12 9 Solarwinds Database Performance Analyzer (DPA). 13 10 Transaction Process of Database. 15 11 Couch Database. 17 12 Mongo Database. 18 13 Business Intelligence and Database. 19 14 Cloud Database. 21 INSIGHT INTO TEMPORAL AND SPATIAL DATABASE CHAITHRA R (19MCA04) A database is collection of data which are related to each other. Everyone involves in day to day use of database, like for instance our brain requires some data to store in and retrieve (remember). Some of real world examples of database are mobile data backups, Google services like text searches, maps, Gmail etc. Temporal and Spatial database are also one of the types of database. A temporal database stores time related data, it provides data types and stores information related to time i.e., past, present and future time. There are two types of time one is validate time-time period when a fact is true in real world and other is transaction time-time period when a fact stored in database was known and combination of both is a bi-temporal data. This type of database is used for insurance (accident and claims histories), banking (credit and debit histories), health care(stock prices) and scientific data(data about experiments) which are all time dependent data. A spatial database is optimized for storing and querying of data related to objects in a geometric space.
    [Show full text]
  • Real Time and Spatiotemporal Data Indexing for Sensor Based Databases
    3 . Management, analysis and integration Real time and spatiotemporal data indexing for sensor based databases S. Servigne, LIRIS: Research Center for Images and Information Systems, INSA, Bât. Blaise Pascal, 20 avenue Einstein, 69621 Villeurbanne Cedex, France G. Noel, LIRIS: Research Center for Images and Information Systems, INSA, Bât. Blaise Pascal, 20 avenue Einstein, 69621 Villeurbanne Cedex, France ABSTRACT: The most important aspect of a system for emergency response is time. So it is necessary to organise fast storage of newly arriving data into databases, fast search of data, maintenance of time sequences, robustness of the systems. All of these processes have to be real time. Another important aspect for environmental risk monitoring for example, is to allow real- time queries based on spatiotemporal attributes. Fastest accesses to the most recent data are also necessary. In addition, real-time data collected into real time database from sensors require fast and efficient management to avoid main memory saturation. The paper discusses real-time spatiotemporal indexing schemes and real time management of main memory. Some possible solutions for real time spatiotemporal data indexing are presented to allow real time and fast data structuring. The proposed index methods support queries privileging recent data. One of the presented indexing solutions is dedicated to real time spatiotemporal data issued from fixed sensors. Another one is dedicated to real time spatiotemporal data collected from agile sensors. Finally, an outline solution concerning management of real time memory saturation according to the significance of data is presented. 1 INTRODUCTION. Sensor networks are now common and usually used for many applications especially concerning risk monitoring.
    [Show full text]
  • An ETL for Integrating Trajectory Data a Medical Delegate Activities Use Case Study
    International Conference on Automation, Control, Engineering and Computer Science (ACECS'14) Proceedings - Copyright IPCO-2014, pp.138-147 ISSN 2356-5608 An ETL for Integrating Trajectory Data A Medical Delegate Activities Use Case Study Assawer Zekri Jalel Akaichi Computer science department. BESTMOD Laboratory, Computer science department. BESTMOD Laboratory, High Institute of Management, University of Tunis, High Institute of Management, University of Tunis, 41, City Bouchoucha, 2000 Bardo, Tunis, Tunisia 41, City Bouchoucha, 2000 Bardo, Tunis, Tunisia [email protected] [email protected] Abstract — Extract, Transfrom and Load (ETL) represent the Finally, the cleaned data are stored in data warehouses or data core of Business Intelligence (BI). They are responsible for marts. So, in this study, we focus our research on ETL. extracting data from heterogeneous sources, transforming and Nowadays, the area of trajectory represents a very active loading them into homogenous targets such as data warehouses. research topic. So, the advent of ubiquitous systems and Today, the spatiotemporal and trajectory data warehouses that positioning technologies that are increasingly widespread like represent an extension of the classical ones are fed by data coming from the pervasive systems which are equipped with GPS, RFID and radar allow the real-time monitoring of the positioning technologies. These latter cause an explosive growth movement of mobile objects and generate a sequence of of geo-located data which enable tracking continuously the trajectory data that income in unbounded way. The processing movements of mobile objects in a time sequence. These data are of these data arriving in real time, at high speed and in a characterized by their complex structures including continuous manner is difficult.
    [Show full text]
  • Real Time and Spatiotemporal Data Indexing for Sensor Based Databases Sylvie Servigne, Guillaume Noël
    Real time and spatiotemporal data indexing for sensor based databases Sylvie Servigne, Guillaume Noël To cite this version: Sylvie Servigne, Guillaume Noël. Real time and spatiotemporal data indexing for sensor based databases. Zlatanova Sisi ,Jonathan Li. Geo-Information Technology for Emergency response. Book with scientific committee , Taylor&Francis, pp.123-142, 2008. hal-01566871 HAL Id: hal-01566871 https://hal.archives-ouvertes.fr/hal-01566871 Submitted on 21 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 3 . Management, analysis and integration Real time and spatiotemporal data indexing for sensor based databases S. Servigne, LIRIS: Research Center for Images and Information Systems, INSA, Bât. Blaise Pascal, 20 avenue Einstein, 69621 Villeurbanne Cedex, France G. Noel, LIRIS: Research Center for Images and Information Systems, INSA, Bât. Blaise Pascal, 20 avenue Einstein, 69621 Villeurbanne Cedex, France ABSTRACT: The most important aspect of a system for emergency response is time. So it is necessary to organise fast storage of newly arriving data into databases, fast search of data, maintenance of time sequences, robustness of the systems. All of these processes have to be real time. Another important aspect for environmental risk monitoring for example, is to allow real- time queries based on spatiotemporal attributes.
    [Show full text]
  • Spatiotemporal Applications of Big Data
    International Journal of Computer Applications (0975 – 8887) Volume 181 – No. 21, October 2018 Spatiotemporal Applications of Big Data Khalid Bin Muhammad Tariq Rahim Soomro College of Computer Science & Information College of Computer Science & Information Systems, IoBM Systems, IoBM Karachi, Sindh, Pakistan Karachi, Sindh, Pakistan ABSTRACT Big data has emerged as a field of study and gained huge generating huge data of spatiotemporal nature. On the other importance these days for both industry and researcher’s point hand GIS systems also contributing largely in this area. Raw of view. Initially database management systems (DBMS) data can used to deduce spatial relations i.e. distance as well developed to solve data management and relevant queries. as direction and shape data and temporal data, which includes Relational DBMS (RDBM) gave another innovation to the occurrence time, duration, occurrence before or after events database field. Through the passage of time, it observed that etc. Relational Databases incorporate some aspects related to some issues remained unsolved and required some more time and space, but are not able to deal with complex data dimensions be added to the data. One of those was time and structure and behaviors. This paper written keeping in view, the other was location. Spatiotemporal aspects of data gained analyzing the uses of spatiotemporal data in selected importance and scientists thought of incorporating these in the industries; such as transportation; medical/health; agriculture; upcoming databases. This paper covers the inclusion of these and manufacturing industries. It gives a comparison of dimensions in a database and its applications in today’s world. industry wise application of spatiotemporal tools and their It also compares some of the tools used these days and year wise development both horizontally and vertically.
    [Show full text]
  • Research on Unified Spatiotemporal Data Model
    RESEARCH ON UNIFIED SPATIOTEMPORAL DATA MODEL Peiquan Jin a, *, Lihua Yue a, Yuchang Gong a a Dept. of Computer Science and Technology, University of Science and Technology of China, Jinzhai Road 96#, Hefei, 230027, P.R. China - (jpq, llyue, ycgong)@ustc.edu.cn KEY WORDS: Spatiotemporal Data model, Spatiotemporal Changes, Object-Relational Database ABSTRACT: Spatiotemporal data model, which is the basis of spatiotemporal data management, deals with the representation and manipulation of spatiotemporal data. So far many spatiotemporal data models have been proposed, but most of them are towards specific applications and few are for general purposes. It is not feasible to design respective data management systems (DBMS) for different applications because it is expensive and exhausting. Aiming to provide general support for spatiotemporal applications in DBMS, our idea is to design a unified spatiotemporal data model and then to implement a general spatiotemporal DBMS. This idea is much like the development of relational database technology. Traditional relational DBMS can support general applications, and is not for specific applications, and most importantly it is successful in real applications. In this paper, we study several issues on the unified spatiotemporal data model, including the data structure, the querying operations and the implementation issues. The unified spatiotemporal data model is based on the object-relational data model. Spatiotemporal objects are represented as spatiotemporal relations and spatiotemporal tuples. And queries on spatiotemporal relations are implemented through an extended relational algebra. The spatiotemporal changes of spatiotemporal objects are represented by spatiotemporal data types, and queries on spatiotemporal data and changes are supported by the operations defined on those data types.
    [Show full text]