Feature Learning and Deep Architectures: New 5 6 Directions for Music Informatics 7 8 Eric J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automatic Feature Learning Using Recurrent Neural Networks
Predicting purchasing intent: Automatic Feature Learning using Recurrent Neural Networks Humphrey Sheil Omer Rana Ronan Reilly Cardiff University Cardiff University Maynooth University Cardiff, Wales Cardiff, Wales Maynooth, Ireland [email protected] [email protected] [email protected] ABSTRACT influence three out of four major variables that affect profit. Inaddi- We present a neural network for predicting purchasing intent in an tion, merchants increasingly rely on (and pay advertising to) much Ecommerce setting. Our main contribution is to address the signifi- larger third-party portals (for example eBay, Google, Bing, Taobao, cant investment in feature engineering that is usually associated Amazon) to achieve their distribution, so any direct measures the with state-of-the-art methods such as Gradient Boosted Machines. merchant group can use to increase their profit is sorely needed. We use trainable vector spaces to model varied, semi-structured input data comprising categoricals, quantities and unique instances. McKinsey A.T. Kearney Affected by Multi-layer recurrent neural networks capture both session-local shopping intent and dataset-global event dependencies and relationships for user Price management 11.1% 8.2% Yes sessions of any length. An exploration of model design decisions Variable cost 7.8% 5.1% Yes including parameter sharing and skip connections further increase Sales volume 3.3% 3.0% Yes model accuracy. Results on benchmark datasets deliver classifica- Fixed cost 2.3% 2.0% No tion accuracy within 98% of state-of-the-art on one and exceed state-of-the-art on the second without the need for any domain / Table 1: Effect of improving different variables on operating dataset-specific feature engineering on both short and long event profit, from [22]. -
Exploring the Potential of Sparse Coding for Machine Learning
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 10-19-2020 Exploring the Potential of Sparse Coding for Machine Learning Sheng Yang Lundquist Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Applied Mathematics Commons, and the Computer Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Lundquist, Sheng Yang, "Exploring the Potential of Sparse Coding for Machine Learning" (2020). Dissertations and Theses. Paper 5612. https://doi.org/10.15760/etd.7484 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Exploring the Potential of Sparse Coding for Machine Learning by Sheng Y. Lundquist A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Dissertation Committee: Melanie Mitchell, Chair Feng Liu Bart Massey Garrett Kenyon Bruno Jedynak Portland State University 2020 © 2020 Sheng Y. Lundquist Abstract While deep learning has proven to be successful for various tasks in the field of computer vision, there are several limitations of deep-learning models when com- pared to human performance. Specifically, human vision is largely robust to noise and distortions, whereas deep learning performance tends to be brittle to modifi- cations of test images, including being susceptible to adversarial examples. Addi- tionally, deep-learning methods typically require very large collections of training examples for good performance on a task, whereas humans can learn to perform the same task with a much smaller number of training examples. -
Text-To-Speech Synthesis
Generative Model-Based Text-to-Speech Synthesis Heiga Zen (Google London) February rd, @MIT Outline Generative TTS Generative acoustic models for parametric TTS Hidden Markov models (HMMs) Neural networks Beyond parametric TTS Learned features WaveNet End-to-end Conclusion & future topics Outline Generative TTS Generative acoustic models for parametric TTS Hidden Markov models (HMMs) Neural networks Beyond parametric TTS Learned features WaveNet End-to-end Conclusion & future topics Text-to-speech as sequence-to-sequence mapping Automatic speech recognition (ASR) “Hello my name is Heiga Zen” ! Machine translation (MT) “Hello my name is Heiga Zen” “Ich heiße Heiga Zen” ! Text-to-speech synthesis (TTS) “Hello my name is Heiga Zen” ! Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Speech production process text (concept) fundamental freq voiced/unvoiced char freq transfer frequency speech transfer characteristics magnitude start--end Sound source fundamental voiced: pulse frequency unvoiced: noise modulation of carrier wave by speech information air flow Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Typical ow of TTS system TEXT Sentence segmentation Word segmentation Text normalization Text analysis Part-of-speech tagging Pronunciation Speech synthesis Prosody prediction discrete discrete Waveform generation ) NLP Frontend discrete continuous SYNTHESIZED ) SEECH Speech Backend Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Rule-based, formant synthesis [] -
Unsupervised Speech Representation Learning Using Wavenet Autoencoders Jan Chorowski, Ron J
1 Unsupervised speech representation learning using WaveNet autoencoders Jan Chorowski, Ron J. Weiss, Samy Bengio, Aaron¨ van den Oord Abstract—We consider the task of unsupervised extraction speaker gender and identity, from phonetic content, properties of meaningful latent representations of speech by applying which are consistent with internal representations learned autoencoding neural networks to speech waveforms. The goal by speech recognizers [13], [14]. Such representations are is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being desired in several tasks, such as low resource automatic speech invariant to confounding low level details in the signal such as recognition (ASR), where only a small amount of labeled the underlying pitch contour or background noise. Since the training data is available. In such scenario, limited amounts learned representation is tuned to contain only phonetic content, of data may be sufficient to learn an acoustic model on the we resort to using a high capacity WaveNet decoder to infer representation discovered without supervision, but insufficient information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the to learn the acoustic model and a data representation in a fully kind of constraint that is applied to the latent representation. supervised manner [15], [16]. We compare three variants: a simple dimensionality reduction We focus on representations learned with autoencoders bottleneck, a Gaussian Variational Autoencoder (VAE), and a applied to raw waveforms and spectrogram features and discrete Vector Quantized VAE (VQ-VAE). We analyze the quality investigate the quality of learned representations on LibriSpeech of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately re- [17]. -
Sparse Feature Learning for Deep Belief Networks
Sparse Feature Learning for Deep Belief Networks Marc'Aurelio Ranzato1 Y-Lan Boureau2,1 Yann LeCun1 1 Courant Institute of Mathematical Sciences, New York University 2 INRIA Rocquencourt {ranzato,ylan,[email protected]} Abstract Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the raw input. Many unsupervised methods are based on reconstructing the input from the representation, while constraining the representation to have cer- tain desirable properties (e.g. low dimension, sparsity, etc). Others are based on approximating density by stochastically reconstructing the input from the repre- sentation. We describe a novel and efficient algorithm to learn sparse represen- tations, and compare it theoretically and experimentally with a similar machine trained probabilistically, namely a Restricted Boltzmann Machine. We propose a simple criterion to compare and select different unsupervised machines based on the trade-off between the reconstruction error and the information content of the representation. We demonstrate this method by extracting features from a dataset of handwritten numerals, and from a dataset of natural image patches. We show that by stacking multiple levels of such machines and by training sequentially, high-order dependencies between the input observed variables can be captured. 1 Introduction One of the main purposes of unsupervised learning is to produce good representations for data, that can be used for detection, recognition, prediction, or visualization. Good representations eliminate irrelevant variabilities of the input data, while preserving the information that is useful for the ul- timate task. One cause for the recent resurgence of interest in unsupervised learning is the ability to produce deep feature hierarchies by stacking unsupervised modules on top of each other, as pro- posed by Hinton et al. -
Multilayer Music Representation and Processing: Key Advances and Emerging Trends
Multilayer Music Representation and Processing: Key Advances and Emerging Trends Federico Avanzini, Luca A. Ludovico LIM – Music Informatics Laboratory Department of Computer Science University of Milan Via G. Celoria 18, 20133 Milano, Italy ffederico.avanzini,[email protected] Abstract—This work represents the introduction to the pro- MAX 2002, this event has been organized once again at the ceedings of the 1st International Workshop on Multilayer Music Department of Computer Science of the University of Milan. Representation and Processing (MMRP19) authored by the Pro- From the point of view of MMRP19 organizers, a key result gram Co-Chairs. The idea is to explain the rationale behind such a scientific initiative, describe the methodological approach used to achieve was inclusiveness. This aspect can be appreciated, in paper selection, and provide a short overview of the workshop’s for example, in the composition of the Scientific Committee, accepted works, trying to highlight the thread that runs through which gathered world-renowned experts from both academia different contributions and approaches. and industry, covering different geographical areas (see Figure Index Terms—Multilayer Music Representations, Multilayer 1) and bringing their multi-faceted experience in sound and Music Applications, Multilayer Music Methods music computing. Inclusiveness was also highlighted in the call for papers, focusing on novel approaches to bridge the gap I. INTRODUCTION between different layers of music representation and generate An effective digital description of music information is a multilayer music contents with no reference to specific formats non-trivial task that involves a number of knowledge areas, or technologies. For instance, suggested application domains technological approaches, and media. -
Copyright by Elad Liebman 2019
Copyright by Elad Liebman 2019 The Dissertation Committee for Elad Liebman certifies that this is the approved version of the following dissertation: Sequential Decision Making in Artificial Musical Intelligence Committee: Peter Stone, Supervisor Kristen Grauman Scott Niekum Maytal Saar-Tsechansky Roger B. Dannenberg Sequential Decision Making in Artificial Musical Intelligence by Elad Liebman Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2019 To my parents, Zipi and Itzhak, who made me the person I am today (for better or for worse), and to my children, Noam and Omer { you are the reason I get up in the morning (literally) Acknowledgments This thesis would not have been possible without the ongoing and unwavering support of my advisor Peter Stone, whose guidance, wisdom and kindness I am forever indebted to. Peter is the kind of advisor who would give you the freedom to work on almost anything, but would be as committed as you are to your research once you've found something you're passionate about. Patient and generous with his time and advice, gracious and respectful in times of disagreement, Peter has the uncanny gift of knowing to trust his students' instincts, but still continually ask the right questions. I could not have hoped for a better advisor. I also wish to thank my other dissertation committee members for their sage advice and useful comments: Roger Dannenberg, Kristen Grauman, Scott Niekum and Maytal Saar-Tsechansky. -
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
sensors Article Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors Frédéric Li 1,*, Kimiaki Shirahama 1 ID , Muhammad Adeel Nisar 1, Lukas Köping 1 and Marcin Grzegorzek 1,2 1 Research Group for Pattern Recognition, University of Siegen, Hölderlinstr 3, 57076 Siegen, Germany; [email protected] (K.S.); [email protected] (M.A.N.); [email protected] (L.K.); [email protected] (M.G.) 2 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3, 40-226 Katowice, Poland * Correspondence: [email protected]; Tel.: +49-271-740-3973 Received: 16 January 2018; Accepted: 22 February 2018; Published: 24 February 2018 Abstract: Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches—in particular deep-learning based—have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers. -
Rafael Ramirez-Melendez
Rafael Ramirez-Melendez Rambla Can Bell 52, Sant Cugat del Vallès, Barcelona 08190, Spain +34 93 6750776 (home), +34 93 5421365 (office) [email protected] DOB: 18/10/1966 Education Computer Science Department, Bristol University, Bristol, UK. JANUARY 1993 - Ph.D. Computer Science. FEBRUARY1997 Thesis: A Logic-Based Concurrent Object-Oriented Programming Language. Computer Science Department, Bristol University, Bristol, UK. OCTOBER 1991 - M.Sc. Computer Science in Artificial Intelligence. OCTOBER 1992 Thesis: Executing Temporal Logic. Universidad Nacional Autónoma de México, Mexico City, Mexico. OCTOBER 1986 - B.Sc. Honours Mathematics (with Distinction). SEPTEMBER 1991 Thesis: Formal Languages and Logic Programming National School of Music, UNAM, Mexico City, Mexico. OCTOBER 1980 - Musical Studies SEPTEMBER 1988 Grade 5 classical Guitar, Grade 8 classical Violin. Professional Experience Department of Information and Communication Technologies, Universitat APRIL 2011 - Pompeu Fabra, Barcelona. PRESENT Associate Professor Department of Information and Communication Technologies, Universitat APRIL 2008 - Pompeu Fabra, Barcelona. APRIL 2011 Associate Professor – Head of Computer Science Studies Department of Information and Communication Technologies, Universitat APRIL 2003 - Pompeu Fabra, Barcelona. MARCH 2008 Assistant Professor Department of Information and Communication Technologies, Universitat SEPTEMBER 2002 - Pompeu Fabra, Barcelona. MARCH 2003 Visiting Lecturer Institut National de Recherche en Informatique et en Automatique (INRIA), MAY 2002 - France. AUGUST 2002 Research Fellow School of Computing, National University of Singapore, Singapore. JANUARY 1999 - Fellow ABRIL 2002 MARCH 1997 - School of Computing, National University of Singapore, Singapore. DECEMBER 1998 Postdoctoral Fellow. JANUARY 1996- South Bristol Learning Network, Bristol, UK. JUNE 1996 Internet Consultant. OCTOBER 1990 - Mathematics Department, National University of Mexico, Mexico City, Mexico. SEPTEMBER 1991 Teaching Assistant. -
Convex Multi-Task Feature Learning
Convex Multi-Task Feature Learning Andreas Argyriou1, Theodoros Evgeniou2, and Massimiliano Pontil1 1 Department of Computer Science University College London Gower Street London WC1E 6BT UK [email protected] [email protected] 2 Technology Management and Decision Sciences INSEAD 77300 Fontainebleau France [email protected] Summary. We present a method for learning sparse representations shared across multiple tasks. This method is a generalization of the well-known single- task 1-norm regularization. It is based on a novel non-convex regularizer which controls the number of learned features common across the tasks. We prove that the method is equivalent to solving a convex optimization problem for which there is an iterative algorithm which converges to an optimal solution. The algorithm has a simple interpretation: it alternately performs a super- vised and an unsupervised step, where in the former step it learns task-speci¯c functions and in the latter step it learns common-across-tasks sparse repre- sentations for these functions. We also provide an extension of the algorithm which learns sparse nonlinear representations using kernels. We report exper- iments on simulated and real data sets which demonstrate that the proposed method can both improve the performance relative to learning each task in- dependently and lead to a few learned features common across related tasks. Our algorithm can also be used, as a special case, to simply select { not learn { a few common variables across the tasks3. Key words: Collaborative Filtering, Inductive Transfer, Kernels, Multi- Task Learning, Regularization, Transfer Learning, Vector-Valued Func- tions. -
Using Supervised Machine Learning for Hierarchical Music Analysis
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence Using Supervised Learning to Uncover Deep Musical Structure Phillip B. Kirlin David D. Jensen Department of Mathematics and Computer Science School of Computer Science Rhodes College University of Massachusetts Amherst Memphis, Tennessee 38112 Amherst, Massachusetts 01003 Abstract and approaching musical studies from a scientific stand- point brings a certain empiricism to the domain which The overarching goal of music theory is to explain the historically has been difficult or impossible due to innate inner workings of a musical composition by examin- human biases (Volk, Wiering, and van Kranenburg 2011; ing the structure of the composition. Schenkerian music Marsden 2009). theory supposes that Western tonal compositions can be viewed as hierarchies of musical objects. The process Despite the importance of Schenkerian analysis in the mu- of Schenkerian analysis reveals this hierarchy by identi- sic theory community, computational studies of Schenke- fying connections between notes or chords of a compo- rian analysis are few and far between due to the lack sition that illustrate both the small- and large-scale con- of a definitive, unambiguous set of rules for the analysis struction of the music. We present a new probabilistic procedure, limited availability of high-quality ground truth model of this variety of music analysis, details of how data, and no established evaluation metrics (Kassler 1975; the parameters of the model can be learned from a cor- Frankel, Rosenschein, and Smoliar 1978). More recent mod- pus, an algorithm for deriving the most probable anal- els, such as those that take advantage of new representational ysis for a given piece of music, and both quantitative techniques (Mavromatis and Brown 2004; Marsden 2010) or and human-based evaluations of the algorithm’s perfor- machine learning algorithms (Gilbert and Conklin 2007) are mance. -
Deep Neural Networks for Music Tagging
Deep Neural Networks for Music Tagging by Keunwoo Choi A thesis submitted to the University of London for the degree of Doctor of Philosophy Department of Electronic Engineering and Computer Science Queen Mary University of London United Kingdom April 2018 Abstract In this thesis, I present my hypothesis, experiment results, and discussion that are related to various aspects of deep neural networks for music tagging. Music tagging is a task to automatically predict the suitable semantic label when music is provided. Generally speaking, the input of music tagging systems can be any entity that constitutes music, e.g., audio content, lyrics, or metadata, but only the audio content is considered in this thesis. My hypothesis is that we can find effective deep learning practices for the task of music tagging task that improves the classification performance. As a computational model to realise a music tagging system, I use deep neural networks. Combined with the research problem, the scope of this thesis is the understanding, interpretation, optimisation, and application of deep neural networks in the context of music tagging systems. The ultimate goal of this thesis is to provide insight that can help to improve deep learning-based music tagging systems. There are many smaller goals in this regard. Since using deep neural networks is a data-driven approach, it is crucial to understand the dataset. Selecting and designing a better architecture is the next topic to discuss. Since the tagging is done with audio input, preprocessing the audio signal becomes one of the important research topics. After building (or training) a music tagging system, finding a suitable way to re-use it for other music information retrieval tasks is a compelling topic, in addition to interpreting the trained system.