Structural and Mechanistic Insight Into N-Glycan Processing by Endo-Α-Mannosidase

Total Page:16

File Type:pdf, Size:1020Kb

Structural and Mechanistic Insight Into N-Glycan Processing by Endo-Α-Mannosidase Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase Andrew J. Thompsona, Rohan J. Williamsb, Zalihe Hakkib, Dominic S. Alonzic, Tom Wennekesd, Tracey M. Glostera, Kriangsak Songsrirotea,e, Jane E. Thomas-Oatesa,e, Tanja M. Wrodniggf, Josef Spreitzf, Arnold E. Stützf, Terry D. Buttersc, Spencer J. Williamsb,1, and Gideon J. Daviesa,1 aDepartment of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom; bSchool of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia; cOxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; dLaboratory of Organic Chemistry, Wageningen University, 6703 HB, Wageningen, The Netherlands; eCentre of Excellence in Mass Spectrometry, University of York, Heslington, York YO10 5DD, United Kingdom; and fInstitute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria Edited by Chi-Huey Wong, Academia Sinica, Taipei, Taiwan, and approved November 28, 2011 (received for review August 9, 2011) N-linked glycans play key roles in protein folding, stability, and glycans are cotranslationally transferred en bloc by the multipro- function. Biosynthetic modification of N-linked glycans, within tein complex oligosaccharyltransferase from the glycophospholi- the endoplasmic reticulum, features sequential trimming and read- pid precursor, Glc3Man9GlcNAc2-diphospho-dolichol, to Asn ornment steps. One unusual enzyme, endo-α-mannosidase, cleaves residues within nascent polypeptide chains (Fig. S1A). The initial mannoside linkages internally within an N-linked glycan chain, processing steps of this 14-sugar glycan commence while the short circuiting the classical N-glycan biosynthetic pathway. Here, unfolded glycoprotein remains attached to the ribosome, and using two bacterial orthologs, we present the first structural and involves the sequential removal of the terminal α-1,2-glucose by mechanistic dissection of endo-α-mannosidase. Structures solved glucosidase I and removal of both the subsequent and final α-1,3- – ðβ∕αÞ at resolutions 1.7 2.1 Å reveal a 8 barrel fold in which the glucose moieties by glucosidase II, a procedure normally required catalytic center is present in a long substrate-binding groove, for the formation of mature N-glycans (1, 5, 10) (Fig. S1B). Under consistent with cleavage within the N-glycan chain. Enzymatic normal conditions, the final α-1,3-glucose residue represents a cleavage of authentic Glc1∕3Man9GlcNAc2 yields Glc1∕3-Man. Using checkpoint in protein folding and quality control because mono- the bespoke substrate α-Glc-1,3-α-Man fluoride, the enzyme was glucosylated immature N-glycans with a terminal α-Glc-1,3-α- shown to act with retention of anomeric configuration. Complexes Man-1,2-α-Man chain are ligands for the molecular chaperones with the established endo-α-mannosidase inhibitor α-Glc-1,3-deox- calnexin (CNX) and calreticulin (CRT) (11). The fate of newly ymannonojirimycin and a newly developed inhibitor, α-Glc-1,3- synthesized glycoproteins is determined by a molecular inspec- isofagomine, and with the reducing-end product α-1,2-mannobiose tion process that monitors their folding state. Correctly folded structurally define the −2toþ2 subsites of the enzyme. These proteins exit the CNX/CRT cycle with removal of the final α- structural and mechanistic data provide a foundation upon which 1,3-glucose from the Man9GlcNAc2 polysaccharide followed by to develop new enzyme inhibitors targeting the hijacking of α-mannosidase I cleavage of a mannose residue from the first N-glycan synthesis in viral disease and cancer. branch and translocation to the Golgi apparatus. Misfolded proteins undergo cycles of deglucosylation and reglucosylation, 3D structure ∣ enzyme inhibition ∣ enzyme mechanism ∣ glycobiology ∣ catalyzed by luminal UDP-glucose-dependent glycoprotein glyco- glycosidase syltransferase. Terminally misfolded proteins are extracted from the folding cycle in a process termed ER-associated degradation -linked glycans are present on the majority of eukaryotic and are retrotranslocated to the cytosol, where they are ubiqui- tinylated and proteasomally degraded. Nproteins and direct their folding and influence their stability. α These polysaccharide decorations play important roles in pro- Endo- -mannosidase (classified into Carbohydrate-Active cesses such as protein folding, targeting, antigenicity, and lectin Enzymes Database family GH99; refs. 12 and 13; www.cazy.org) interactions, with defects leading to cellular dysfunction (1). Aber- provides a glucosidase I and II independent pathway for the maturation of N-glycans (14). Endo-α-mannosidase hydrolyzes rant N-glycan composition, through either incorrect or incomplete α processing, is associated with various conditions, including Alzhei- the -1,2-mannosidic bond between the glucose-substituted man- mer’s disease, congenital disorders of glycosylation, viral infection, nose and the remainder of the N-glycan, and acts on the struc- and metastatic cancer progression (2–4). Alteration of N-glycan tures Glc1–3Man9GlcNAc2 as well as structures that have been trimmed by mannosidases in the 6′-pentamannosyl branch, BIOCHEMISTRY biosynthesis in cancerous cells and by human pathogenic viruses releasing Glc1–3-1,3-α-Man oligosaccharides (15) (Fig. S1C). renders the various proteins involved in their biosynthesis and Despite growing insight into the biosynthetic function and subcel- modification therapeutic targets. N-glycans are built-up and then “biosynthetically” degraded in an orchestrated process involving synthetic enzymes (glycosyltransferases) and catabolic enzymes Author contributions: A.J.T., R.J.W., T.D.B., S.J.W., and G.J.D. designed research; A.J.T., R.J. (glycoside hydrolases) (5) (Fig. S1). Efforts to control diseases W., Z.H., D.S.A., T.W., T.M.G., and K.S., performed research; R.J.W., Z.H., T.M.W., J.S., A.E.S., of glycoprotein biosynthesis have largely focused on the use of and T.D.B. contributed new reagents/analytic tools; A.J.T., R.J.W., J.E.T.-O., T.D.B., S.J.W., and G.J.D. analyzed data; and A.J.T., S.J.W., and G.J.D. wrote the paper. inhibitors of the “biosynthetic” trimming glycoside hydrolases in- CHEMISTRY The authors declare no conflict of interest. volved in the early stages of N-glycan remodeling, such as gluco- sidases I and II. However, the failure of these inhibitors to provide This article is a PNAS Direct Submission. an effective treatment of these conditions likely occurs, in part, Freely available online through the PNAS open access option. because of a unique enzyme, endo-α-mannosidase, which cleaves Data deposition: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID codes 4acy, 4acz, 4ad0, 4ad1, 4ad2, 4ad3, 4ad4, mannoside linkages internally, within the first branch of an N-gly- and 4ad5). – can chain (6 8). 1To whom correspondence may be addressed. E-mail: [email protected] or sjwill@ N-glycans are covalently bound to the side-chain nitrogen of unimelb.edu.au. asparagine (Asn) residues in the consensus Asn-Xxx-Ser/Thr (9). This article contains supporting information online at www.pnas.org/lookup/suppl/ Within the endoplasmic reticulum (ER), presynthesized 14-mer doi:10.1073/pnas.1111482109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1111482109 PNAS ∣ January 17, 2012 ∣ vol. 109 ∣ no. 3 ∣ 781–786 Downloaded by guest on October 1, 2021 lular localization of endo-α-mannosidase (14), no structures have pyranosyl-1,3-α-mannopyranosyl fluoride (Glc-ManF), was synthe- been reported and nothing is known about its catalytic mechan- sized (see SI Methods). Hydrolysis of Glc-ManF releases fluoride, ism. Endo-α-mannosidase therefore represents an important which is monitored using a fluoride ion-selective electrode. BtGH99 K k ∕K enzyme for further study, with the ultimate goal of developing shows high activity against Glc-ManF with m and cat m values approaches to treat diseases involving aberrant N-glycosylation. of 0.48 mM and 9.9 s−1 mM−1 (Fig. 1B). Although fluoride detec- We present a structural and kinetic analysis of two GH99 endo- tion is constrained to a relatively limited pH range, further obser- α-mannosidase enzymes from the enteric bacteria Bacteroides the- vation of this reaction across the pH range 5.5–7.5 revealed the taiotaomicron (BtGH99) and Bacteroides xylanisolvens (BxGH99), enzyme to be optimally active at approximately pH 7.0, consistent the first structures for any GH99 enzyme. We show that these with another bacterial homolog from Shewanella amazonensis (17). protein orthologs are endo-α-mannosidases active on glucosylated That Glc-ManF acts as a substrate although various aryl manno- N-glycans and perform catalysis with a net retention of anomeric sides do not, coupled with activity on GlcMan9GlcNAc2 and configuration. Structures of complexes obtained with two aza/imino Glc3Man9GlcNAc2, confirms BtGH99 as an endo-α-mannosidase sugar inhibitors reveal intimate details of the catalytic residues, with a requirement for a minimal α-1,3-linked disaccharide sub- allowing the proposal of a unique blueprint for catalysis and pro- strate and hence with obligate binding for catalysis in a −2 subsite viding a structural rationale for inhibition in both a mechanistic (for subsite nomenclature see ref. 18). context and ultimately for the development of therapeutic agents.
Recommended publications
  • Structure and Function of a Glycoside Hydrolase Family 8 Endoxylanase from Teredinibacter Turnerae
    This is a repository copy of Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/137106/ Version: Published Version Article: Fowler, Claire A, Hemsworth, Glyn R orcid.org/0000-0002-8226-1380, Cuskin, Fiona et al. (5 more authors) (2018) Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae. Acta crystallographica. Section D, Structural biology. pp. 946-955. ISSN 2059-7983 https://doi.org/10.1107/S2059798318009737 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ research papers Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae ISSN 2059-7983 Claire A. Fowler,a Glyn R. Hemsworth,b Fiona Cuskin,c Sam Hart,a Johan Turkenburg,a Harry J. Gilbert,d Paul H. Waltone and Gideon J. Daviesa* aYork Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England, b Received 20 March 2018 School of Molecular and Cellular Biology, The Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, c Accepted 9 July 2018 England, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, England, dInstitute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, England, and eDepartment of Chemistry, The University of York, York YO10 5DD, England.
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • Mannoside Recognition and Degradation by Bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese
    Mannoside recognition and degradation by bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese To cite this version: Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese. Mannoside recognition and degradation by bacteria. Biological Reviews, Wiley, 2016, 10.1111/brv.12316. hal- 01602393 HAL Id: hal-01602393 https://hal.archives-ouvertes.fr/hal-01602393 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2016), pp. 000–000. 1 doi: 10.1111/brv.12316 Mannoside recognition and degradation by bacteria Simon Ladeveze` 1, Elisabeth Laville1, Jordane Despres2, Pascale Mosoni2 and Gabrielle Potocki-Veron´ ese` 1∗ 1LISBP, Universit´e de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France 2INRA, UR454 Microbiologie, F-63122, Saint-Gen`es Champanelle, France ABSTRACT Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them.
    [Show full text]
  • J. Biol. Chem. Published Online December 22, 2019
    This is a repository copy of Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/155946/ Version: Accepted Version Article: Armstrong, Zachary and Davies, Gideon J orcid.org/0000-0002-7343-776X (2020) Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. The Journal of biological chemistry. pp. 4316-4326. ISSN 1083-351X https://doi.org/10.1074/jbc.RA119.011591 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ JBC Papers in Press. Published on December 22, 2019 as Manuscript RA119.011591 The latest version is at http://www.jbc.org/cgi/doi/10.1074/jbc.RA119.011591 Structure and Function of Bs164 Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164.
    [Show full text]
  • Structure of Human Endo-Α-1,2-Mannosidase (MANEA), an Antiviral Host- Glycosylation Target
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179523; this version posted July 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 CLASSIFICATION: Biological Sciences / Physical Sciences (Chemistry) TITLE: Structure of human endo-α-1,2-mannosidase (MANEA), an antiviral host- glycosylation target AUTHORS: Łukasz F. Sobala1, Pearl Z Fernandes2, Zalihe Hakki2, Andrew J Thompson1, Jonathon D Howe3, Michelle Hill3, Nicole Zitzmann3, Scott Davies4, Zania Stamataki4, Terry D. Butters3, Dominic S. Alonzi3, Spencer J Williams2,*, Gideon J Davies1,* AFFILIATIONS: 1. Department of Chemistry, University of York, YO10 5DD, United Kingdom. 2. School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia. 3. Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road Oxford OX1 3QU, United Kingdom. 4. Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. CORRESPONDING AUTHOR: [email protected], ORCID 0000-0001-6341-4364 [email protected] ORCID 0000-0002-7343-776X bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179523; this version posted July 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Structural and Functional Studies of Glycoside Hydrolase Family 12 Enzymes from Trichoderma Reesei and Other Cellulolytic Microorganisms
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 819 Structural and Functional Studies of Glycoside Hydrolase Family 12 Enzymes from Trichoderma reesei and other Cellulolytic Microorganisms BY MATS SANDGREN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 Dissertation for the Degree of Doctor of Philosophy in Molecular Biology presented at Uppsala University in 2003. ABSTRACT Sandgren, M. 2003. Structural and functional studies of glycoside hydrolase family 12 enzymes from Trichoderma reesei and other cellulolytic microorganisms. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the faculty of Science and Technology 819. 68 pp. Uppsala. ISBN 91-554-5562-X Cellulose is the most abundant organic compound on earth. A wide range of highly specialized microorganisms, have evolved that utilize cellulose as carbon and energy source. Enzymes called cellulases, produced by these cellulolytic organisms, perform the major part of cellulose degradation. In this study the three-dimensional structure of four homologous glycoside hydrolase family 12 cellulases will be presented, three fungal enzymes; Humicola grisea Cel12A, Hypocrea schweinitzii Cel12A, Trichoderma reesei Cel12A, and one bacterial; Streptomyces sp. 11AG8 Cel12A. The structural and biochemical information gathered from these and 15 other GH family 12 homologues has been used for the design of variants of these enzymes. These variants have biochemically been characterized, and thereby the positions and the types of mutations have been identified responsible for the biochemical differences between the homologous enzymes, e.g., thermal stability and activity. The three-dimensional structures of two T. reesei Cel12A variants, where the mutations have significant impact on the stability or the activity of the enzyme have been determined.
    [Show full text]
  • Glycoside Hydrolase Stabilization of Transition State Charge: New Directions for Inhibitor Design† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Glycoside hydrolase stabilization of transition state charge: new directions for inhibitor design† Cite this: Chem. Sci., 2020, 11, 10488 a a a b All publication charges for this article Weiwu Ren, ‡ Marco Farren-Dai, Natalia Sannikova, Katarzyna Swiderek,´ have been paid for by the Royal Society Yang Wang, ‡a Oluwafemi Akintola, a Robert Britton, *a Vicent Moliner *b of Chemistry and Andrew J. Bennet *a Carbasugars are structural mimics of naturally occurring carbohydrates that can interact with and inhibit enzymes involved in carbohydrate processing. In particular, carbasugars have attracted attention as inhibitors of glycoside hydrolases (GHs) and as therapeutic leads in several disease areas. However, it is unclear how the carbasugars are recognized and processed by GHs. Here, we report the synthesis of three carbasugar isotopologues and provide a detailed transition state (TS) analysis for the formation of the initial GH-carbasugar covalent intermediate, as well as for hydrolysis of this intermediate, using a combination of experimentally measured kinetic isotope effects and hybrid QM/MM calculations. We find that the a-galactosidase from Thermotoga maritima effectively stabilizes TS charge development on Creative Commons Attribution-NonCommercial 3.0 Unported Licence. a remote C5-allylic center acting in concert with the reacting carbasugar, and catalysis proceeds via an exploded, or loose, SN2 transition state with no discrete enzyme-bound cationic intermediate. We conclude that, in complement to what we know about the TS structures of enzyme-natural substrate Received 10th August 2020 complexes, knowledge of the TS structures of enzymes reacting with non-natural carbasugar substrates Accepted 16th September 2020 shows that GHs can stabilize a wider range of positively charged TS structures than previously thought.
    [Show full text]
  • Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application
    biomolecules Review Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application 1, , 2 3 1 4, Neha Srivastava * y, Rishabh Rathour , Sonam Jha , Karan Pandey , Manish Srivastava y, Vijay Kumar Thakur 5,* , Rakesh Singh Sengar 6, Vijai K. Gupta 7,* , Pranab Behari Mazumder 8, Ahamad Faiz Khan 2 and Pradeep Kumar Mishra 1,* 1 Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India; [email protected] 2 Department of Bioengineering, Integral University, Lucknow 226026, India; [email protected] (R.R.); [email protected] (A.F.K.) 3 Department of Botany, Banaras Hindu University, Varanasi 221005, India; [email protected] 4 Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India; [email protected] 5 Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK 6 Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India; [email protected] 7 Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia 8 Department of Biotechnology, Assam University, Silchar 788011, India; [email protected] * Correspondence: [email protected] (N.S.); vijay.Kumar@cranfield.ac.uk (V.K.T.); [email protected] (V.K.G.); [email protected] (P.K.M.); Tel.: +372-567-11014 (V.K.G.); Fax: +372-620-4401 (V.K.G.) These authors have equal contribution. y Received: 29 March 2019; Accepted: 28 May 2019; Published: 6 June 2019 Abstract: The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels.
    [Show full text]
  • Action of Multiple Rice -Glucosidases on Abscisic Acid Glucose Ester
    International Journal of Molecular Sciences Article Action of Multiple Rice β-Glucosidases on Abscisic Acid Glucose Ester Manatchanok Kongdin 1, Bancha Mahong 2, Sang-Kyu Lee 2, Su-Hyeon Shim 2, Jong-Seong Jeon 2,* and James R. Ketudat Cairns 1,* 1 School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; [email protected] 2 Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; [email protected] (B.M.); [email protected] (S.-K.L.); [email protected] (S.-H.S.) * Correspondence: [email protected] (J.-S.J.); [email protected] (J.R.K.C.); Tel.: +82-31-2012025 (J.-S.J.); +66-44-224304 (J.R.K.C.); Fax: +66-44-224185 (J.R.K.C.) Abstract: Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress.
    [Show full text]
  • Biochemical Characterization of Β-Xylan Acting Glycoside
    BIOCHEMICAL CHARACTERIZATION OF β-XYLAN ACTING GLYCOSIDE HYDROLASES FROM THE THERMOPHILIC BACTERIUM Caldicellulosiruptor saccharolyticus Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Jin Cao Dayton, Ohio December, 2012 BIOCHEMICAL CHARACTERIZATION OF β-XYLAN ACTING GLYCOSIDE HYDROLASES FROM THE THERMOPHILIC BACTERIUM Caldicellulosiruptor saccharolyticus Name: Cao, Jin APPROVED BY: ______________________ ________________________ Donald A. Comfort, Ph.D. Amy Ciric, Ph.D. Advisory Committee Chairman Committee Member Research Advisor & Assistant Professor Lecturer Department of Department of Chemical & Materials Engineering Chemical & Materials Engineering ________________________ Karolyn Hansen, Ph.D. Committee Member Assistant Professor Department of Biology _______________________ ________________________ John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii ABSTRACT BIOCHEMICAL CHARACTERIZATION OF Β-XYLAN ACTING GLYCOSIDE HYDROLASES FROM THE THERMOPHILIC BACTERIUM Caldicellulosiruptor saccharolyticus Name: Cao, Jin University of Dayton Research Advisor: Donald A. Comfort Fossil fuels have been the dominant source for energy around the world since the industrial revolution, however, with the increasing demand for energy and decreasing fossil fuel reserves alternative energy sources must be exploited. Bio-ethanol is a promising prospect for an alternative energy source to petroleum, especially when plant biomass is used as the replacement carbon source. This gives greater benefit for implementation of bioethanol as a viable alternative transport fuel than food stocks such as starch from corn. The implementation of this next generation of bioethanol requires more robust and environmentally friendly methods for degrading cellulose and hemicellulose, the two major components of plant biomass.
    [Show full text]
  • Structure of Human Endo-Α-1,2-Mannosidase (MANEA), an Antiviral Host-Glycosylation Target
    Structure of human endo-α-1,2-mannosidase (MANEA), an antiviral host-glycosylation target Łukasz F. Sobalaa,1, Pearl Z. Fernandesb,c, Zalihe Hakkib,c, Andrew J. Thompsona, Jonathon D. Howed, Michelle Hilld, Nicole Zitzmannd, Scott Daviese, Zania Stamatakie, Terry D. Buttersd, Dominic S. Alonzid, Spencer J. Williamsb,c,2, and Gideon J. Daviesa,2 aDepartment of Chemistry, University of York, York YO10 5DD, United Kingdom; bSchool of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; cBio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; dOxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and eInstitute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom Edited by Gerald W. Hart, University of Georgia, Athens, GA, and accepted by Editorial Board Member Brenda A. Schulman September 28, 2020 (received for review July 1, 2020) Mammalian protein N-linked glycosylation is critical for glycopro- glucosylated mannose in the A branch, releasing Glc1–3Man and tein folding, quality control, trafficking, recognition, and function. Man8GlcNAc2; human MANEA acts faster on Glc1Man than on N-linked glycans are synthesized from Glc3Man9GlcNAc2 precur- Glc2,3Man glycans (9). The endomannosidase pathway allows sors that are trimmed and modified in the endoplasmic reticulum processing of ER-escaped, glucosylated high-mannose glycans on (ER) and Golgi apparatus by glycoside hydrolases and glycosyl- glycoproteins that fold independently of the calnexin/calreticulin transferases. Endo-α-1,2-mannosidase (MANEA) is the sole endo- folding cycle, allowing them to rejoin the downstream N-glycan acting glycoside hydrolase involved in N-glycan trimming and is maturation pathway.
    [Show full text]
  • Microbial Glycoside Hydrolases As Antibiofilm Agents with Cross-Kingdom Activity
    Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity Brendan D. Snarra,b,1, Perrin Bakerc,1, Natalie C. Bamfordc,d,1, Yukiko Satoa,b, Hong Liue, Mélanie Lehouxb, Fabrice N. Gravelatb, Hanna Ostapskaa,b, Shane R. Baistrocchia,b, Robert P. Ceronea,b, Elan E. Fillere, Matthew R. Parsekf, Scott G. Fillere,g, P. Lynne Howellc,d,2, and Donald C. Shepparda,b,2 aDepartment of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada; bDepartment of Medicine, Infectious Diseases and Immunity in Global Health Program, Centre for Translational Biology, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; cProgram in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada; dDepartment of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; eLos Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; fDepartment of Microbiology, University of Washington, Seattle, WA 98195; and gDavid Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90024 Edited by Scott J. Hultgren, Washington University School of Medicine, St. Louis, MO, and approved March 30, 2017 (received for review March 2, 2017) Galactosaminogalactan and Pel are cationic heteropolysaccharides exopolysaccharide (7). Biofilm formation provides a significant produced by the opportunistic pathogens Aspergillus fumigatus advantage to these organisms because the matrix mediates ad- and Pseudomonas aeruginosa, respectively. These exopolysacchar- herence to host cells (8, 9) and aids in the resistance to both – ides both contain 1,4-linked N-acetyl-D-galactosamine and play an antimicrobial agents (10, 11) and host immune defenses (12, important role in biofilm formation by these organisms.
    [Show full text]