Characterization of Heat-Like Repeat Superfamily of Dna Glycosylases

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Heat-Like Repeat Superfamily of Dna Glycosylases CHARACTERIZATION OF HEAT-LIKE REPEAT SUPERFAMILY OF DNA GLYCOSYLASES By Rongxin Shi Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences June 30, 2018 Nashville, Tennessee Approved: Katherine L. Friedman, Ph.D. Todd Graham, Ph.D. Carmelo Rizzo, Ph.D. Benjamin Spiller, Ph.D. Brandt F. Eichman, Ph.D. To My Beloved Husband Jun, Dear and Loving Mom, Changfen, and Dad, Feng, Thank You for All Your Love and Support ii ACKNOWLEDGMENTS First and foremost, I want to thank my Ph.D. supervisor, Dr. Brandt Eichman for his enormous support, encouragement and guidance throughout my graduate study. His passion in science always inspires me and his talent in research tells me what a great scientist is. Besides science, I would like to express my heartfelt thanks for his support in my career development. I could not finish my graduate study and be prepared for my future career without his guidance and support. I would also like to thank my dissertation committee members: Drs. Katherine Friedman, Todd Graham, Carmelo Rizzo, and Benjamin Spiller, not only for their intellectual guidance on my research projects, but also for their supportive contributions to my personal career development. I want to thank all my wonderful current and previous lab members for project and emotional support that helps me get through the challenges in research, work and life. I especially thank Dr. Elwood Mullins for mentoring me when I first joined the lab and offering assistance on my dissertation project. The work was supported by National Science Foundation (MCB-1517695), National Institutes of Health (R01 ES019625), and Department of Biological Sciences. I want to thank my family and friends, especially my husband Jun, mom Changfen and dad Feng. Vandy and Nashville gave me the opportunity not only to undertake my graduate study in the fantastic Eichman lab, but also to meet my husband who always inspires me. I am also so grateful to my parents for their encouragement and unconditional love. I will always remember the great time in Nashville and everyone, without whom I could not get to this day. iii TABLE OF CONTENTS Page DEDICATION ................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF TABLES ........................................................................................................... vii LIST OF FIGURES ........................................................................................................ viii LIST OF ABBREVIATIONS ............................................................................................. xi Chapter I. INTRODUCTION .......................................................................................................... 1 Sources of DNA Damage ............................................................................................. 1 History of DNA Discovery and Characterization ....................................................... 1 DNA Damage from Replication and Physiological Hydrolysis .................................. 4 DNA Damage from Cell Metabolites and Environmental Radiation .......................... 5 DNA Damage from Exogenous Alkylation Agents .................................................... 8 Overview of DNA Repair Pathways ........................................................................... 10 Base Excision Repair ............................................................................................. 11 Direct Reversal Repair............................................................................................ 14 Nucleotide Excision Repair ..................................................................................... 16 Alkylpurine DNA Glycosylases ................................................................................... 17 Human Alkyladenine DNA Glycosylase Superfamily .............................................. 18 Alkylpurine Helix-Hairpin-Helix Superfamily ............................................................ 20 Helix-Turn-Helix_42 Superfamily ........................................................................... 23 HEAT-like Repeat Superfamily .............................................................................. 24 Scope of this work ...................................................................................................... 26 II. SELECTIVE BASE EXCISION REPAIR OF DNA DAMAGE BY THE NON-BASE- FLIPPING DNA GLYCOSYLASE ALKC ....................................................................... 27 Abstract ...................................................................................................................... 27 iv Introduction ................................................................................................................ 28 Results ....................................................................................................................... 32 Proteins within Two AlkC Subgroups are Functionally Distinct from AlkD .............. 32 AlkC Encircles and Bends Damaged DNA ............................................................. 37 The AlkC Ig-like Domain is a Unique DNA Binding Motif in Bacteria ...................... 40 AlkC Inserts Its Active Site into the DNA Duplex in lieu of Base Flipping ............... 45 Structural Differences between AlkC and AlkD ....................................................... 54 AlkC Catalyzes Base Excision of 3mC and 1mA from Duplex DNA ...................... 58 Discussion .................................................................................................................. 62 Methods ..................................................................................................................... 62 Phylogenetic Analysis ............................................................................................. 62 Protein Purification ................................................................................................. 63 Base Excision Assays............................................................................................. 65 X-Ray Crystallography ............................................................................................ 66 III. CELLULAR FUNCTION OF ALKC AND ALKD IN RESPONSE TO DIFFERENT DNA DAMAING AGENTS ...................................................................................................... 69 Abstract ...................................................................................................................... 69 Introduction ................................................................................................................ 70 Results ....................................................................................................................... 73 AlkC and AlkD are Not Essential for Repair of Methylation Damage ...................... 73 The Expression of AlkC and AlkD upon DNA Damaging Agent Treatment ............ 75 AlkD-Mediated BER and UvrA-Mediated NER Work Synergistically in Repair of Bulky Yatakemycin Adducts ................................................................................... 76 Cellular Protection against 3-Methycytosine and 1-Methyladenine by AlkC ........... 79 Discussion .................................................................................................................. 82 Methods ..................................................................................................................... 83 Preparation of ΔalkC, ΔalkD, and ΔalkC ΔalkD Cells ............................................. 83 Determination of Resistance to DNA Damaging Agents ........................................ 84 RNA Quantification ................................................................................................. 85 Base Excision Assays............................................................................................. 85 v IV. STRUCTURAL BIOLOGY OF HEAT-LIKE REPEAT FAMILY OF DNA GLYCOSYLASES ......................................................................................................... 87 Abstract ..................................................................................................................... 87 Introduction ............................................................................................................... 88 Discussion ................................................................................................................. 91 Phylogeny of the HLR superfamily ......................................................................... 91 The general HLR structure ..................................................................................... 93 AlkD Uses a Non-Base-Flipping Mechanism to Excise Bulky Lesions .................. 95 AlkC Uses a Non-Base-Flipping Mechanism to Select for Small Alkyl-adducts ... 101 AlkD2, a B-Helix-Absent HLR Superfamily Member ............................................ 103 AlkF Favors Branched DNA Binding ..................................................................... 103 Comparison between HLR Proteins ..................................................................... 105 V. DISCUSSION AND FUTURE DIRECTIONS .......................................................... 110
Recommended publications
  • Structure and Function of a Glycoside Hydrolase Family 8 Endoxylanase from Teredinibacter Turnerae
    This is a repository copy of Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/137106/ Version: Published Version Article: Fowler, Claire A, Hemsworth, Glyn R orcid.org/0000-0002-8226-1380, Cuskin, Fiona et al. (5 more authors) (2018) Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae. Acta crystallographica. Section D, Structural biology. pp. 946-955. ISSN 2059-7983 https://doi.org/10.1107/S2059798318009737 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ research papers Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae ISSN 2059-7983 Claire A. Fowler,a Glyn R. Hemsworth,b Fiona Cuskin,c Sam Hart,a Johan Turkenburg,a Harry J. Gilbert,d Paul H. Waltone and Gideon J. Daviesa* aYork Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England, b Received 20 March 2018 School of Molecular and Cellular Biology, The Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, c Accepted 9 July 2018 England, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, England, dInstitute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, England, and eDepartment of Chemistry, The University of York, York YO10 5DD, England.
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • Deoxyguanosine Depurination and Yield DNA–Protein Cross-Links in Nucleosome Core Particles and Cells
    Histone tails decrease N7-methyl-2′-deoxyguanosine depurination and yield DNA–protein cross-links in nucleosome core particles and cells Kun Yanga, Daeyoon Parkb, Natalia Y. Tretyakovac, and Marc M. Greenberga,1 aDepartment of Chemistry, Johns Hopkins University, Baltimore, MD 21218; bDepartment of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55417; and cDepartment of Medicinal Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55417 Edited by Cynthia J. Burrows, University of Utah, Salt Lake City, UT, and approved October 18, 2018 (received for review August 6, 2018) Monofunctional alkylating agents preferentially react at the adducts. DPC formation between histone proteins and MdG was N7 position of 2′-deoxyguanosine in duplex DNA. Methylated also observed in MMS-treated V79 Chinese hamster lung cells. DNA, such as that produced by methyl methanesulfonate (MMS) Intracellular DPC formation from MdG could have significant and temozolomide, exists for days in organisms. The predominant biological effects. consequence of N7-methyl-2′-deoxyguanosine (MdG) is widely be- Compared with other DNA lesions, MdG minimally perturbs lieved to be abasic site (AP) formation via hydrolysis, a process duplex structure (12). The steric effects of N7-methylation within that is slow in free DNA. Examination of MdG reactivity within the major groove are minimal, and the aromatic planar structure nucleosome core particles (NCPs) provided two general observa- is maintained. Although the Watson–Crick hydrogen bonding tions. MdG depurination rate constants are reduced in NCPs com- pattern of dG is retained, recent structural studies raise the pared with when the identical DNA sequence is free in solution.
    [Show full text]
  • Mannoside Recognition and Degradation by Bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese
    Mannoside recognition and degradation by bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese To cite this version: Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese. Mannoside recognition and degradation by bacteria. Biological Reviews, Wiley, 2016, 10.1111/brv.12316. hal- 01602393 HAL Id: hal-01602393 https://hal.archives-ouvertes.fr/hal-01602393 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2016), pp. 000–000. 1 doi: 10.1111/brv.12316 Mannoside recognition and degradation by bacteria Simon Ladeveze` 1, Elisabeth Laville1, Jordane Despres2, Pascale Mosoni2 and Gabrielle Potocki-Veron´ ese` 1∗ 1LISBP, Universit´e de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France 2INRA, UR454 Microbiologie, F-63122, Saint-Gen`es Champanelle, France ABSTRACT Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them.
    [Show full text]
  • Structure of Human Endo-Α-1,2-Mannosidase (MANEA), an Antiviral Host- Glycosylation Target
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179523; this version posted July 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 CLASSIFICATION: Biological Sciences / Physical Sciences (Chemistry) TITLE: Structure of human endo-α-1,2-mannosidase (MANEA), an antiviral host- glycosylation target AUTHORS: Łukasz F. Sobala1, Pearl Z Fernandes2, Zalihe Hakki2, Andrew J Thompson1, Jonathon D Howe3, Michelle Hill3, Nicole Zitzmann3, Scott Davies4, Zania Stamataki4, Terry D. Butters3, Dominic S. Alonzi3, Spencer J Williams2,*, Gideon J Davies1,* AFFILIATIONS: 1. Department of Chemistry, University of York, YO10 5DD, United Kingdom. 2. School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia. 3. Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road Oxford OX1 3QU, United Kingdom. 4. Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. CORRESPONDING AUTHOR: [email protected], ORCID 0000-0001-6341-4364 [email protected] ORCID 0000-0002-7343-776X bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179523; this version posted July 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Structural and Functional Studies of Glycoside Hydrolase Family 12 Enzymes from Trichoderma Reesei and Other Cellulolytic Microorganisms
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 819 Structural and Functional Studies of Glycoside Hydrolase Family 12 Enzymes from Trichoderma reesei and other Cellulolytic Microorganisms BY MATS SANDGREN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 Dissertation for the Degree of Doctor of Philosophy in Molecular Biology presented at Uppsala University in 2003. ABSTRACT Sandgren, M. 2003. Structural and functional studies of glycoside hydrolase family 12 enzymes from Trichoderma reesei and other cellulolytic microorganisms. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the faculty of Science and Technology 819. 68 pp. Uppsala. ISBN 91-554-5562-X Cellulose is the most abundant organic compound on earth. A wide range of highly specialized microorganisms, have evolved that utilize cellulose as carbon and energy source. Enzymes called cellulases, produced by these cellulolytic organisms, perform the major part of cellulose degradation. In this study the three-dimensional structure of four homologous glycoside hydrolase family 12 cellulases will be presented, three fungal enzymes; Humicola grisea Cel12A, Hypocrea schweinitzii Cel12A, Trichoderma reesei Cel12A, and one bacterial; Streptomyces sp. 11AG8 Cel12A. The structural and biochemical information gathered from these and 15 other GH family 12 homologues has been used for the design of variants of these enzymes. These variants have biochemically been characterized, and thereby the positions and the types of mutations have been identified responsible for the biochemical differences between the homologous enzymes, e.g., thermal stability and activity. The three-dimensional structures of two T. reesei Cel12A variants, where the mutations have significant impact on the stability or the activity of the enzyme have been determined.
    [Show full text]
  • Glycoside Hydrolase Stabilization of Transition State Charge: New Directions for Inhibitor Design† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Glycoside hydrolase stabilization of transition state charge: new directions for inhibitor design† Cite this: Chem. Sci., 2020, 11, 10488 a a a b All publication charges for this article Weiwu Ren, ‡ Marco Farren-Dai, Natalia Sannikova, Katarzyna Swiderek,´ have been paid for by the Royal Society Yang Wang, ‡a Oluwafemi Akintola, a Robert Britton, *a Vicent Moliner *b of Chemistry and Andrew J. Bennet *a Carbasugars are structural mimics of naturally occurring carbohydrates that can interact with and inhibit enzymes involved in carbohydrate processing. In particular, carbasugars have attracted attention as inhibitors of glycoside hydrolases (GHs) and as therapeutic leads in several disease areas. However, it is unclear how the carbasugars are recognized and processed by GHs. Here, we report the synthesis of three carbasugar isotopologues and provide a detailed transition state (TS) analysis for the formation of the initial GH-carbasugar covalent intermediate, as well as for hydrolysis of this intermediate, using a combination of experimentally measured kinetic isotope effects and hybrid QM/MM calculations. We find that the a-galactosidase from Thermotoga maritima effectively stabilizes TS charge development on Creative Commons Attribution-NonCommercial 3.0 Unported Licence. a remote C5-allylic center acting in concert with the reacting carbasugar, and catalysis proceeds via an exploded, or loose, SN2 transition state with no discrete enzyme-bound cationic intermediate. We conclude that, in complement to what we know about the TS structures of enzyme-natural substrate Received 10th August 2020 complexes, knowledge of the TS structures of enzymes reacting with non-natural carbasugar substrates Accepted 16th September 2020 shows that GHs can stabilize a wider range of positively charged TS structures than previously thought.
    [Show full text]
  • Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application
    biomolecules Review Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application 1, , 2 3 1 4, Neha Srivastava * y, Rishabh Rathour , Sonam Jha , Karan Pandey , Manish Srivastava y, Vijay Kumar Thakur 5,* , Rakesh Singh Sengar 6, Vijai K. Gupta 7,* , Pranab Behari Mazumder 8, Ahamad Faiz Khan 2 and Pradeep Kumar Mishra 1,* 1 Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India; [email protected] 2 Department of Bioengineering, Integral University, Lucknow 226026, India; [email protected] (R.R.); [email protected] (A.F.K.) 3 Department of Botany, Banaras Hindu University, Varanasi 221005, India; [email protected] 4 Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India; [email protected] 5 Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK 6 Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India; [email protected] 7 Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia 8 Department of Biotechnology, Assam University, Silchar 788011, India; [email protected] * Correspondence: [email protected] (N.S.); vijay.Kumar@cranfield.ac.uk (V.K.T.); [email protected] (V.K.G.); [email protected] (P.K.M.); Tel.: +372-567-11014 (V.K.G.); Fax: +372-620-4401 (V.K.G.) These authors have equal contribution. y Received: 29 March 2019; Accepted: 28 May 2019; Published: 6 June 2019 Abstract: The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels.
    [Show full text]
  • Action of Multiple Rice -Glucosidases on Abscisic Acid Glucose Ester
    International Journal of Molecular Sciences Article Action of Multiple Rice β-Glucosidases on Abscisic Acid Glucose Ester Manatchanok Kongdin 1, Bancha Mahong 2, Sang-Kyu Lee 2, Su-Hyeon Shim 2, Jong-Seong Jeon 2,* and James R. Ketudat Cairns 1,* 1 School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; [email protected] 2 Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; [email protected] (B.M.); [email protected] (S.-K.L.); [email protected] (S.-H.S.) * Correspondence: [email protected] (J.-S.J.); [email protected] (J.R.K.C.); Tel.: +82-31-2012025 (J.-S.J.); +66-44-224304 (J.R.K.C.); Fax: +66-44-224185 (J.R.K.C.) Abstract: Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress.
    [Show full text]
  • Biochemical Characterization of Β-Xylan Acting Glycoside
    BIOCHEMICAL CHARACTERIZATION OF β-XYLAN ACTING GLYCOSIDE HYDROLASES FROM THE THERMOPHILIC BACTERIUM Caldicellulosiruptor saccharolyticus Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Jin Cao Dayton, Ohio December, 2012 BIOCHEMICAL CHARACTERIZATION OF β-XYLAN ACTING GLYCOSIDE HYDROLASES FROM THE THERMOPHILIC BACTERIUM Caldicellulosiruptor saccharolyticus Name: Cao, Jin APPROVED BY: ______________________ ________________________ Donald A. Comfort, Ph.D. Amy Ciric, Ph.D. Advisory Committee Chairman Committee Member Research Advisor & Assistant Professor Lecturer Department of Department of Chemical & Materials Engineering Chemical & Materials Engineering ________________________ Karolyn Hansen, Ph.D. Committee Member Assistant Professor Department of Biology _______________________ ________________________ John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii ABSTRACT BIOCHEMICAL CHARACTERIZATION OF Β-XYLAN ACTING GLYCOSIDE HYDROLASES FROM THE THERMOPHILIC BACTERIUM Caldicellulosiruptor saccharolyticus Name: Cao, Jin University of Dayton Research Advisor: Donald A. Comfort Fossil fuels have been the dominant source for energy around the world since the industrial revolution, however, with the increasing demand for energy and decreasing fossil fuel reserves alternative energy sources must be exploited. Bio-ethanol is a promising prospect for an alternative energy source to petroleum, especially when plant biomass is used as the replacement carbon source. This gives greater benefit for implementation of bioethanol as a viable alternative transport fuel than food stocks such as starch from corn. The implementation of this next generation of bioethanol requires more robust and environmentally friendly methods for degrading cellulose and hemicellulose, the two major components of plant biomass.
    [Show full text]
  • Structure of Human Endo-Α-1,2-Mannosidase (MANEA), an Antiviral Host-Glycosylation Target
    Structure of human endo-α-1,2-mannosidase (MANEA), an antiviral host-glycosylation target Łukasz F. Sobalaa,1, Pearl Z. Fernandesb,c, Zalihe Hakkib,c, Andrew J. Thompsona, Jonathon D. Howed, Michelle Hilld, Nicole Zitzmannd, Scott Daviese, Zania Stamatakie, Terry D. Buttersd, Dominic S. Alonzid, Spencer J. Williamsb,c,2, and Gideon J. Daviesa,2 aDepartment of Chemistry, University of York, York YO10 5DD, United Kingdom; bSchool of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; cBio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; dOxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and eInstitute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom Edited by Gerald W. Hart, University of Georgia, Athens, GA, and accepted by Editorial Board Member Brenda A. Schulman September 28, 2020 (received for review July 1, 2020) Mammalian protein N-linked glycosylation is critical for glycopro- glucosylated mannose in the A branch, releasing Glc1–3Man and tein folding, quality control, trafficking, recognition, and function. Man8GlcNAc2; human MANEA acts faster on Glc1Man than on N-linked glycans are synthesized from Glc3Man9GlcNAc2 precur- Glc2,3Man glycans (9). The endomannosidase pathway allows sors that are trimmed and modified in the endoplasmic reticulum processing of ER-escaped, glucosylated high-mannose glycans on (ER) and Golgi apparatus by glycoside hydrolases and glycosyl- glycoproteins that fold independently of the calnexin/calreticulin transferases. Endo-α-1,2-mannosidase (MANEA) is the sole endo- folding cycle, allowing them to rejoin the downstream N-glycan acting glycoside hydrolase involved in N-glycan trimming and is maturation pathway.
    [Show full text]
  • Selective Base Excision Repair of DNA Damage by the Non‐Base‐Flipping
    Published online: October 20, 2017 Article Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC Rongxin Shi1 , Elwood A Mullins1, Xing-Xing Shen1, Kori T Lay2, Philip K Yuen2, Sheila S David2, Antonis Rokas1 & Brandt F Eichman1,* Abstract and strand breaks (Wyatt & Pittman, 2006; Krokan & Bjøra˚s, 2013). The toxicity of these DNA lesions is the basis for the use of alkylat- DNA glycosylases preserve genome integrity and define the speci- ing agents in cancer chemotherapy (Sedgwick, 2004). To avoid the ficity of the base excision repair pathway for discreet, detrimental toxic effects of DNA alkylation and maintain integrity of their modifications, and thus, the mechanisms by which glycosylases genomes, all organisms possess multiple repair mechanisms to locate DNA damage are of particular interest. Bacterial AlkC and remove the diversity of alkyl-DNA modifications. Nucleotide AlkD are specific for cationic alkylated nucleobases and have a excision repair (NER) is the predominant mechanism to eliminate distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non- helix-distorting and bulky adducts, whereas small nucleobase base-flipping mechanism that enables excision of bulky lesions modifications (e.g., methyl, etheno groups) are repaired by direct more commonly associated with nucleotide excision repair. In reversal or base excision repair (BER) pathways (Sedgwick, 2004; contrast, AlkC has a much narrower specificity for small lesions, Reardon & Sancar, 2005; Mishina & He, 2006). N1-methyladenine principally N3-methyladenine (3mA). Here, we describe how AlkC (1mA) and N3-methylcytosine (3mC), predominant in single- selects for and excises 3mA using a non-base-flipping strategy stranded (ss) DNA and RNA, are demethylated by the AlkB family distinct from that of AlkD.
    [Show full text]