2017 SRM Annual Meeting Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

2017 SRM Annual Meeting Abstracts 2017 SRM Annual Meeting Abstracts Oral Technical Session: Inventory, Monitoring, and Assessment AFRICAN DROUGHT: PIONERING CRITICAL PREDICTIVE EARLY WARNING SYSTEM FOR DROUGHT MITIGATION AND RANGELAND MANAGEMENT. Joseph N. Matere*; Food and Agriculture Organisation of the United Nations, Nairobi, Kenya Changing climate, growing populations, settlement and increasing land area needed for crop production leads to further rangeland degradation and pastoralists who depend on mobility for their livelihoods face greater challenges, uncertainty and risk. The above conditions lead to lack of water and pasture in traditional grazing areas and along livestock migration routes often resulting in increased resource based conflict, higher livestock mortalities, poverty and non-sustainable coping strategies that further exacerbate an already precarious eco-system. Drought, erratic rainfall and lack of pasture and water influence livestock body condition, reproductive capacity and marketability, leading to unfavorable terms of trade for the pastoralists and short and long term food insecurity and malnourishment. All sectors of society are affected and there is need to focus on impact at family and community level in order to develop effective risk management and response strategies. Attaining food security remains a major commitment of the all governments in Africa. For example the Kenya government has outlined in the Agriculture Sector Development Support Programme (ASDSP 2010- 2020) as well as the Vision 2030 Economic pillar its endovor to realise zero hunger by the year 2030. The population of Kenya which stands now at over 40 million is dependent on agriculture as the main stay. However against this backdrop, there remain major challenges in attaining this noble objective. More often than not, lack of accurate prediction and analysis to address the recurrent food insecurity results into cyclic nature of same impacts season after season. A novel web-based Predictive Early Warning System decision support tool was developed by FAO in collaboration with Texas A and M University and the National Drought Management Authority (NDMA). The tool integrates near real-time forage quantity assessment, short and long-term forecasting of forage and livestock water status to allow stakeholders to examine risk and identify potential tradeoffs and responses associated with drought and changing climate. PARAMETERIZING THE PRECISION OF LINE-POINT INTERCEPT ESTIMATES BY RESAMPLING SIMULATED SPATIAL DATA. Seth Simonds*1, Gregg E. Simonds2; 1Open Range Consulting, Salt Lake City, UT, 2Open Range Consulting, Park City, UT Rangelands are spatially heterogeneous and characteristically so; however, the sampling protocols used to estimate rangeland attributes assume spatial homogeneity, which is Abstract Proceedings of the 70th SRM Annual Meeting, Technical Training and Trade Show Red Rock and Rangeland Jan. 29 to Feb. 2, 2017 – St. George, UT paradoxical. This study tests the hypothesis that stratified sampling techniques that assume homogeneity across the sampled space, like line-point intercept, generate statistically meaningful estimates of rangeland cover attributes. By repeatedly generating line-point estimates over simulated data with known spatial attributes, a distribution of possible percent cover estimates is created. By analyzing this distribution, the precision of line-point intercept estimates can be parametrized in terms of a truth standardized confidence interval. The results indicate a tremendous lack of precision (i.e. wide variation) in estimates generated by line-point intercept, especially for low percent cover attributes. Therefore, homogeneity of the strata cannot be assumed and stratified sampling cannot be validly applied to estimate rangeland attributes; science, policy and debate of rangelands must rest upon alternative estimating procedures. ANNUAL PHOTO MONITORING: A RELATIONSHIP OF DROUGHT, GRAZING AND CHEATGRASS INVASION. Garry D. Brown*, Sherel K. Goodrich; USDA Forest Service, Vernal, UT The health of rangeland vegetation can be influenced by numerous factors including grazing, fire, drought and other disturbances. It is often a combination of disturbances over time and space that result in a gradual change to the landscape. However, in some cases, continuous annual photo monitoring can capture astounding changes that can be directly associated or related to an event of specific disturbance. From an evaluation of numerous spring and fall annual monitoring using repeat photography on the Uinta Mountains, Utah, the relationship between drought and the spread of cheatgrass has been dramatic and relatively abrupt. The photos in this study identify two periods of drought that appear to have initiated a conversion of once native perennial grasses to nearly 100 percent cover of cheatgrass in a matter of a few years. Annual monitoring using simple repeat photography, especially when it comes to capturing the outcomes of annual events, will tell a story that can sometimes change our thinking or shed light on an improved management idea. This annual monitoring can assist managers to more effectively make changes, if needed, during drought conditions to maintain the preferred perennial vegetation. DISTRIBUTION OF NATIVE GRASSLAND HABITATS IN SOUTH DAKOTA: A NEW MODEL FOR THE NORTHERN PLAINS. Peter J. Bauman*1, Benjamin T. Carlson1, Tanner J. Butler1, Michael C. Wimberlly2, Alexander J. Smart2, Joseph G. Blastick3, Cody Grewing4, Matthew W. Morlock5; 1South Dakota State University Extension, Watertown, SD, 2South Dakota State University, Brookings, SD, 3The Nature Conservancy, Clear Lake, SD, 4South Dakota Department of Game, Fish, and Parks, Rapid City, SD, 5Pheasants Forever, Brookings, SD Native grasslands and their associated wetlands are crucial to emerging natural resource issues in South Dakota. We utilized the South Dakota Farm Service Agency’s Common Land Unit (CLU) data and US Department of Agriculture (USDA) National Agriculture Abstract Proceedings of the 70th SRM Annual Meeting, Technical Training and Trade Show Red Rock and Rangeland Jan. 29 to Feb. 2, 2017 – St. George, UT Imagery Program (NAIP) county mosaic aerial imagery to evaluate 22.6 million acres of land 44 eastern South Dakota counties to determine the extent of remaining native grasslands. We analyzed land in approximately one mi2 sections to identify all cropping and other land disturbances. Remaining land tracts were then categorized as potentially native grassland or woodland. Finally, we removed all known water bodies > 40 acres as defined by the South Dakota Statewide Water Bodies layer to determine the remaining undisturbed grassland/wetland complex. Overall, 5,488,025 acres (24.2%) of eastern South Dakota were designated as potentially native land. Approximately 14.9 million acres (65.9%) were deemed to have a cropping history while approximately 1.6 million acres (6.9%) were found to have some type of land disturbance not indicated by a CLU crop code, for a total of 16.5 million acres (72.8%) of all lands with a proven disturbance history. Within the 22.6 million-acre evaluation area, 1.4 million acres (6.1%) were found to have permanent protection from future conversion. Nearly 1 million acres of the approximately 5.5 million acres of undisturbed land (17.5%) had some type of permanent conservation protection status. In total, we identified 962,734 protected native acres, representing only 4.3% of eastern South Dakota’s total land base. Our results will inform future decisions regarding grazing management, endangered species, and water quality related to buffer zones, wetlands, and storage and will serve as a template for the northern Great Plains. USE OF THE GLOBAL LAND-POTENTIAL KNOWLEDGE SYSTEM FOR PLANNING AND EVALUATION OF RANGELAND RESTORATION PROJECTS. David W. Kimiti*1, Jeffrey Herrick2, Amy Ganguli1, Jason W. Karl2, Derek W. Bailey3, Corinna Riginos4; 1New Mexico State University, Las Cruces, NM, 2USDA-ARS, Las Cruces, NM, 3New Mexico State University, Las Cruses, NM, 4U. Wyoming, Laramie, WY Lack of monitoring and reporting of rangeland restoration outcomes often hampers efforts to improve, replicate, and upscale effective restoration practices to other affected areas. The Global Land-Potential Knowledge System (LandPKS) aims to support these efforts by providing tools for land managers to inventory their resources, match treatment and control plots for restoration projects based on biophysical similarity and potential productivity, and monitor and evaluate project outcomes. We highlight current and potential applications of the LandPKS mobile application suite, including LandInfo and LandCover. LandInfo is a site characterization tool that is currently used in over 10 countries for collecting basic soil and topographic information. When combined with local climate information provided through the system, LandInfo can be used to determine site potential and identify ecological sites. LandCover is a tool for collecting soil and vegetation cover data that is compatible with large-scale rangeland monitoring efforts in the United States (e.g., NRCS National Resources Inventory; BLM Assessment, Inventory, and Monitoring program) and facilitates monitoring of changes in plant community composition and assessment of wind and water erosion risk. Both these apps provide summary results to the user immediately assessment at plot level is completed, providing real-time information for decision making. The LandPKS system allows users Abstract Proceedings
Recommended publications
  • Types of American Grasses
    z LIBRARY OF Si AS-HITCHCOCK AND AGNES'CHASE 4: SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM oL TiiC. CONTRIBUTIONS FROM THE United States National Herbarium Volume XII, Part 3 TXE&3 OF AMERICAN GRASSES . / A STUDY OF THE AMERICAN SPECIES OF GRASSES DESCRIBED BY LINNAEUS, GRONOVIUS, SLOANE, SWARTZ, AND MICHAUX By A. S. HITCHCOCK z rit erV ^-C?^ 1 " WASHINGTON GOVERNMENT PRINTING OFFICE 1908 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM Issued June 18, 1908 ii PREFACE The accompanying paper, by Prof. A. S. Hitchcock, Systematic Agrostologist of the United States Department of Agriculture, u entitled Types of American grasses: a study of the American species of grasses described by Linnaeus, Gronovius, Sloane, Swartz, and Michaux," is an important contribution to our knowledge of American grasses. It is regarded as of fundamental importance in the critical sys- tematic investigation of any group of plants that the identity of the species described by earlier authors be determined with certainty. Often this identification can be made only by examining the type specimen, the original description being inconclusive. Under the American code of botanical nomenclature, which has been followed by the author of this paper, "the nomenclatorial t}rpe of a species or subspecies is the specimen to which the describer originally applied the name in publication." The procedure indicated by the American code, namely, to appeal to the type specimen when the original description is insufficient to identify the species, has been much misunderstood by European botanists. It has been taken to mean, in the case of the Linnsean herbarium, for example, that a specimen in that herbarium bearing the same name as a species described by Linnaeus in his Species Plantarum must be taken as the type of that species regardless of all other considerations.
    [Show full text]
  • Klamath Falls 2014 and 2015 Exceptional Event EPA Concurrence Request
    Klamath Falls 2014 and 2015 Exceptional Event EPA Concurrence Request Submitted to: EPA, Region 10 By: Rachel Sakata and Anthony Barnack May 2017 Air Quality Planning 700 NE Multnomah St., Suite #600 Portland, OR 97232 Phone: (503) 229-5659 (800) 452-4011 Fax: (503) 229-6762 Contact: Rachel Sakata www.oregon.gov/DEQ DEQ is a leader in restoring, maintaining and enhancing the quality of Oregon’s air, land and water. Oregon Department of Environmental Quality This report prepared by: Oregon Department of Environmental Quality 700 NE Multnomah St., Suite #600 Portland, OR 97232 1-800-452-4011 www.oregon.gov/deq Contact: Rachel Sakata 503-229-5659 Alternative formats (Braille, large type) of this document can be made available. Contact DEQ, Portland, at 503-229-5696, or toll-free in Oregon at 1-800-452-4011, ext. 5696. State of Oregon Department of Environmental Quality ii Table of Contents Executive Summary..................................................................................................................................... 1 1. Conceptual Model ................................................................................................................................... 3 1.1 Overview .................................................................................................................................................... 3 1.2 Source Area ....................................................................................................................................................... 5 1.3 Affected Region
    [Show full text]
  • Riparian Habitat Mitigation Standards and Implementation Guidelines
    Town of Sahuarita Riparian Habitat Mitigation Standards and Implementation Guidelines A supplement to Title 18, STC 18.65 of the Town of Sahuarita Zoning Code titled “Riparian Habitat Protection and Mitigation Requirements” Section One: The Ordinance 2 Overview of the Riparian Habitat Protection Ordinance Options for Treatment of Regulated Habitat In Lieu Fee Option 8 Modified Development Standards 10 Riparian Habitat Mitigation Plan Approval Section Two: Riparian Classifications, Descriptions, 12 Mitigation & Monitoring Requirements Characteristic of Habitat Onsite Mitigation Requirements Mitigation Requirements 15 Hydroriparian, Mesoriparian & Xeroriparian Mitigation Standards 17 Section Three: Components of a Mitigation Plan Submittal 20 Mitigation Plan Components Mitigation Planting Plan 23 Elements of a Monitoring Report 25 Section Four: Frequently Asked Questions 27 Appendix A: Mitigation Plan Submittal Checklists 29 Appendix B: Approved Plant List 42 Appendix C: Installation & Maintenance Requirements 56 Appendix D: Water Harvesting Guidelines 64 Appendix E: List of Noxious & Invasive Plant Species 66 & Best Management Practices Appendix F: Field Mapping & Onsite Vegetation Survey 73 Appendix G: Glossary of Terms 75 Appendix H: Standard Operating Procedure (RECON) 78 This document was prepared with permission from Pima County Regional Flood Control District and Novak Environmental, Inc. It contains reformatting and minor rewording of a document prepared by McGann and Associates, Inc. under contract to Pima County Flood Control District in July, 1994. The format is copyrighted by Novak Environmental, Inc. 2001 1 September 24, 2012 Section One: The Ordinance What is the history of this Ordinance? On April 24, 2006, the Town of Sahuarita Town Council adopted the Town of Sahuarita Floodplain and Erosion Hazard Management Code.
    [Show full text]
  • Summer 2013 Rare Plants on Display by Chet Neufeld NPSS Executive Director the NPSS Has Once Again Been Busy with Field Tours
    Vol. 18, No. 2 /npss.sk www.npss.sk.ca @NPSS_SK Summer 2013 Rare plants on display By CHET NEUFELD NPSS Executive Director The NPSS has once again been busy with field tours. While the weather didn’t always cooperate, we managed to have some good times and find a lot of interesting and rare plants. Here’s a break- down of the tours for 2013. Peggy McKercher Conservation Area Tour - May 25 The summer tour schedule started out with a tour to the Peggy McKercher Conservation Area on the outskirts of Saskatoon. This is an area in transition; it has recently been acquired by the Meewasin Valley Author- ity but had been a Catholic Church retreat for a number of years. As such, there was a mix of introduced and native plants, and signs of human use which will be remediated as the site is brought back to a more natural state. Continued on Pages 4, 5 & 6 PHOTOS BY CANDACE AND CHET NEUFELD ABOVE – Woolly gromwell (Lithospermum ruderale) found during the Southwest Corner Tour in Cypress Hills on June 22 and 23. RIGHT – Smooth Cliffbrake (Pellaea glabella ssp. occidentalis) found in the Cypress Hills, a new location for Saskatchewan. NPSS could Getting to NatureCity Holts win Spot use a few good the root of an Festival draws the Crocus 2 board members 3 invasive problem 7 1,200 people 8 contest, again 1 In search of a NPSS Board of Directors President: few good plants, Shelley Heidinger 306-634-9771 Past-President Tara Sample 306-777-9137 Vice-President: board members John Hauer 306-463-5507 I hope that everyone enjoyed their summer! So far at least.
    [Show full text]
  • Low-Water Native Plants for Colorado Gardens: Prairie and Plains
    Low-Water Native Plants for Colorado Gardens: Prairie and Plains Published by the Colorado Native Plant Society 1 Prairie and Plains Region Denver Botanic Gardens, Chatfield Photo by Irene Shonle Introduction This range map is approximate. Please be familiar with your area to know which This is one in a series of regional native planting guides that are a booklet is most appropriate for your landscape. collaboration of the Colorado Native Plant Society, CSU Extension, Front Range Wild Ones, the High Plains Environmental Center, Butterfly The Colorado native plant gardening guides cover these 5 regions: Pavilion and the Denver Botanic Gardens. Plains/Prairie Front Range/Foothills Many people have an interest in landscaping with native plants, Southeastern Colorado and the purpose of this booklet is to help people make the most Mountains above 7,500 feet successful choices. We have divided the state into 5 different regions Lower Elevation Western Slope that reflect different growing conditions and life zones. These are: the plains/prairie, Southeastern Colorado, the Front Range/foothills, the This publication was written by the Colorado Native Plant Society Gardening mountains above 7,500’, and lower elevation Western Slope. Find the Guide Committee: Committee Chair, Irene Shonle, Director, CSU Extension, area that most closely resembles your proposed garden site for the Gilpin County; Nick Daniel, Horticulturist, Denver Botanic Gardens; Deryn best gardening recommendations. Davidson, Horticulture Agent, CSU Extension, Boulder County; Susan Crick, Front Range Chapter, Wild Ones; Jim Tolstrup, Executive Director, High Plains Why Native? Environmental Center (HPEC); Jan Loechell Turner, Colorado Native Plant There are many benefits to using Colorado native plants for home Society (CoNPS); Amy Yarger, Director of Horticulture, Butterfly Pavilion.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    ROOT CHARACTERISTICS OF WARM SEASON TURFGRASS SPECIES UNDER LIMITED SOIL WATER AND VARYING MOWING HEIGHTS By BISHOW PRAKASH POUDEL DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2016 © 2016 Bishow P. Poudel Dedicated to my family and all the earthquake victims of Nepal ACKNOWLEDGMENTS I would like to thank my advisers Dr. Diane Rowland and Dr. Kevin Kenworthy and the supervisory committee for their continuous support and help throughout the program. My sincere acknowledgement goes to Andy Schreffler for his help with root images collections throughout the study period. Sincere thanks goes to Dr. Patricio Munoz and James Colee for their help with statistical analysis. Similarly I would also like to acknowledge my lab mates, colleague and friends for their help and support. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES ........................................................................................................ 12 LIST OF ABBREVIATIONS ........................................................................................... 14 ABSTRACT ................................................................................................................... 15 CHAPTER
    [Show full text]
  • Large Trees, Supertrees, and Diversification of the Grass Family Trevor R
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 19 2007 Large Trees, Supertrees, and Diversification of the Grass Family Trevor R. Hodkinson Trinity College, Dublin, Ireland Nicolas Salamin University of Lausanne, Lausanne, Switzerland Mark W. Chase Royal Botanic Gardens, Kew, UK Yanis Bouchenak-Khelladi Trinity College, Dublin, Ireland Stephen A. Renvoize Royal Botanic Gardens, Kew, UK See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hodkinson, Trevor R.; Salamin, Nicolas; Chase, Mark W.; Bouchenak-Khelladi, Yanis; Renvoize, Stephen A.; and Savolainen, Vincent (2007) "Large Trees, Supertrees, and Diversification of the Grass Family," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 19. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/19 Large Trees, Supertrees, and Diversification of the Grass Family Authors Trevor R. Hodkinson, Nicolas Salamin, Mark W. Chase, Yanis Bouchenak-Khelladi, Stephen A. Renvoize, and Vincent Savolainen This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol23/iss1/ 19 Aliso 23, pp. 248–258 ᭧ 2007, Rancho Santa Ana Botanic Garden LARGE TREES, SUPERTREES, AND DIVERSIFICATION OF THE GRASS FAMILY TREVOR R. HODKINSON,1,5 NICOLAS SALAMIN,2 MARK W. CHASE,3 YANIS BOUCHENAK-KHELLADI,1,3 STEPHEN A. RENVOIZE,4
    [Show full text]
  • Seeds and Punts Imported
    x: • U. S. DEPARTMENT OF AGRICULTURE. BTJRSAD OP PLiNT INBDSTRT—BULLETIN NO. 142. B. T. GALLOWAY, Chief of Bureau. SEEDS AND PUNTS IMPORTED DURING THE PERIOD FROM APRIL 1 TO JUNE 30f 1908: INVENTORY No. 15; Nos. 22511 TO 23322. ISSUED FEBRUARY 25, 1909. WASHINGTON: OOTEKNMENT PRINTING OFFICE. 19 09. PXJLLETINS OF THE BtTBEAXT OF PLANT INDUSTRY. The scientific and technical publications of the Bureau of Plant Industry, wnicji was organized July 1, 1901, are issued in a single series of bulletins, a list of which follows. Attention is directed to the fact that the publications in this series are not for general distribution. The Superintendent of Documents, Government Printing Office, Washington, D. C, Is authorized by law to sell them at cost, and to him all applications for these bulletins should be made, accompanied by a postal money order for the required amount or by cash. Numbers omitted from this list can not t>e furnished. No. 1. The Relation of Lime and Magnesia to Plant Growth. 1901. Price, 10 cents. 2. Spermatogenesis and Fecundation of Zamia. 1901. Price, 20 cents. 3. Macaroni Wheats. 1901. Price, 20 cents. 4. Range Improvement in Arizona. 1901. Price, 10 cents. , 6. A List of American Varieties of Peppers. 1902. Price, 10 cents. 7. The Algerian Durum Wheats. 1902, Price, 15 cents. 9. The North American Species of Spartina. 1902. Price, 10 cents. 10. Records of Seed Distribution, etc. 1902. Price, 10 cents. 11. Johnson Grass. 1902. Price, 10 cents. 12.'Stock Ranges of Northwestern California. 1902. Price, 15 cents. 13. Range Improvement in Central Texas.
    [Show full text]
  • Using Scenarios to Evaluate Vulnerability of Grassland Communities to Climate Change in the Southern Great Plains of the United States
    In cooperation with the U.S. Fish and Wildlife Service, Science Applications Program, Great Plains Landscape Conservation Cooperative Using Scenarios to Evaluate Vulnerability of Grassland Communities to Climate Change in the Southern Great Plains of the United States Open-File Report 2019–1046 U.S. Department of the Interior U.S. Geological Survey Cover. Wind turbines and domestic cattle grazing in grassland illustrate energy development and the shift in dominance from native herbivores to domestic livestock. Photograph by Natasha Carr, U.S. Geological Survey, August 23, 2012. Using Scenarios to Evaluate Vulnerability of Grassland Communities to Climate Change in the Southern Great Plains of the United States By Daniel J. Manier, Natasha B. Carr, Gordon C. Reese, and Lucy Burris In cooperation with the U.S. Fish and Wildlife Service, Science Applications Program, Great Plains Landscape Conservation Cooperative Open-File Report 2019–1046 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text.
    [Show full text]
  • Global Relationships Between Plant Functional Traits and Environment in Grasslands
    GLOBAL RELATIONSHIPS BETWEEN PLANT FUNCTIONAL TRAITS AND ENVIRONMENT IN GRASSLANDS EMMA JARDINE A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Animal and Plant Sciences Submission Date July 2017 ACKNOWLEDGMENTS First of all I am enormously thankful to Colin Osborne and Gavin Thomas for giving me the opportunity to undertake the research presented in this thesis. I really appreciate all their invaluable support, guidance and advice. They have helped me to grow in knowledge, skills and confidence and for this I am extremely grateful. I would like to thank the students and post docs in both the Osborne and Christin lab groups for their help, presentations and cake baking. In particular Marjorie Lundgren for teaching me to use the Licor, for insightful discussions and general support. Also Kimberly Simpson for all her firey contributions and Ruth Wade for her moral support and employment. Thanks goes to Dave Simpson, Maria Varontsova and Martin Xanthos for allowing me to work in the herbarium at the Royal Botanic Gardens Kew, for letting me destructively harvest from the specimens and taking me on a worldwide tour of grasses. I would also like to thank Caroline Lehman for her map, her useful comments and advice and also Elisabeth Forrestel and Gareth Hempson for their contributions. I would like to thank Brad Ripley for all of his help and time whilst I was in South Africa. Karmi Du Plessis and her family and Lavinia Perumal for their South African friendliness, warmth and generosity and also Sean Devonport for sharing all the much needed teas and dub.
    [Show full text]
  • Grasses of Namibia Contact
    Checklist of grasses in Namibia Esmerialda S. Klaassen & Patricia Craven For any enquiries about the grasses of Namibia contact: National Botanical Research Institute Private Bag 13184 Windhoek Namibia Tel. (264) 61 202 2023 Fax: (264) 61 258153 E-mail: [email protected] Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records.
    [Show full text]
  • Ranking Species for Veld Restoration in Semi-Arid Regions Using
    agronomy Article Ranking Species for Veld Restoration in Semi-Arid Regions Using Agronomic, Morphological and Chemical Parameters of Selected Grass Species at Different Developmental Stages under Controlled Environment Ntokozo Happy Msiza 1,2,*, Khuliso Emmanuel Ravhuhali 1,2 , Hilda Kwena Mokoboki 1,2, Sydney Mavengahama 2,3 and Lebogang Ezra Motsei 1,2 1 Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho 2735, South Africa; [email protected] (K.E.R.); [email protected] (H.K.M.); [email protected] (L.E.M.) 2 Food Security and Safety Niche Area, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho 2735, South Africa; [email protected] 3 Department of Crop Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho 2735, South Africa * Correspondence: [email protected] Abstract: The establishment of complementary native grass species could be an ideal method of dealing with existing problems of veld degradation and inadequate forage quantity and quality of pastures. A greenhouse experiment was conducted to evaluate the effect of native grasses viz., Anthephora pubescens, Cenchrus ciliaris, Chloris gayana, Dactylis glomerata, Digitaria eriantha, Eragrostis curvula, Festuca arundinacea, Panicum maximum and Themeda triandra. Attributes at different growth stages on agronomy, morphology and chemical composition were checked. Panicum maximum had Citation: Msiza, N.H.; Ravhuhali, the broader (p < 0.05) leaves across all growth stages when compared to all other grass species. Festuca K.E.; Mokoboki, H.K.; Mavengahama, arundinacea had highest (p < 0.05) number of tillers than C.
    [Show full text]