Game Theory, Alive

Total Page:16

File Type:pdf, Size:1020Kb

Game Theory, Alive Game Theory, Alive Anna R. Karlin and Yuval Peres Draft January 20, 2013 Please send comments and corrections to [email protected] and [email protected] i We are grateful to Alan Hammond, Yun Long, G´abor Pete, and Peter Ralph for scribing early drafts of this book from lectures by Yuval Peres. These drafts were edited by Liat Kessler, Asaf Nachmias, Yelena Shvets, Sara Robinson and David Wilson; Yelena also drew many of the figures. We also thank Ranjit Samra for the lemon figure, Barry Sinervo for the Lizard picture, and Davis Sheperd for additional figures. Sourav Chatterjee, Elchanan Mossel, Asaf Nachmias, and Shobhana Stoy- anov taught from drafts of the book and provided valuable suggestions. Thanks also to Varsha Dani, Kieran Kishore, Itamar Landau, Eric Lei, Mal- lory Monasterio, Andrea McCool, Katia Nepom, Colleen Ross, Zhuohong Shen, Davis Sheperd, Stephanie Somersille, and Sithparran Vanniasegaram for comments and corrections. The support of the NSF VIGRE grant to the Department of Statistics at the University of California, Berkeley, and NSF grants DMS-0244479, DMS-0104073, and CCF-1016509 is acknowledged. Contents 1 Introduction page 1 2 Two-person zero-sum games 6 2.1 Examples 6 2.2 Definitions 8 2.3 Saddle points and Nash equilibria 10 2.4 Simplifying and solving zero-sum games 11 2.4.1 The technique of domination 12 2.4.2 Summary of Domination 13 2.4.3 The use of symmetry 14 2.4.4 Series and Parallel Game Combinations 17 2.5 Games on graphs 18 2.5.1 Maximum Matchings 18 2.5.2 Hide-and-seek games 20 2.5.3 Weighted hide-and-seek games 22 2.5.4 The bomber and battleship game 25 2.6 Von Neumann’s minimax theorem 26 2.7 Linear Programming and the Minimax Theorem 31 2.7.1 Linear Programming Basics 32 2.7.2 Linear Programming Duality 33 2.7.3 Duality, more formally 34 2.7.4 The proof of the duality theorem 35 2.7.5 An interpretation of a primal/dual pair 38 2.8 Zero-Sum Games With Infinite Action Spaces∗ 40 2.9 Solved Exercises 47 2.9.1 Another Betting Game 47 3 General-sum games 49 3.1 Some examples 49 ii Contents iii 3.2 Nash equilibria 52 3.3 General-sum games with more than two players 56 3.4 Games with Infinite Strategy Spaces 60 3.5 Evolutionary game theory 62 3.5.1 Hawks and Doves 62 3.5.2 Evolutionarily stable strategies 65 3.6 Potential games 68 3.7 Correlated equilibria 71 3.8 The proof of Nash’s theorem 75 3.9 Fixed-point theorems* 77 3.9.1 Easier fixed-point theorems 77 3.9.2 Sperner’s lemma 80 3.9.3 Brouwer’s fixed-point theorem 83 4 Signaling and asymmetric games 94 4.1 Signaling and asymmetric information 95 4.1.1 Examples of signaling (and not) 96 4.1.2 The collapsing used car market 98 4.2 Some further examples 99 5 Social choice 102 5.1 Voting and Ranking Mechanisms 102 5.1.1 Definitions 103 5.1.2 Instant runoff elections 105 5.1.3 Borda count 106 5.1.4 Dictatorship 107 5.2 Arrow’s impossibility theorem 107 5.3 Strategy-proof Voting 109 6 Auctions and Mechanism Design 114 6.1 Auctions 114 6.2 Single Item Auctions 114 6.2.1 Profit in single-item auctions 116 6.2.2 More profit? 117 6.2.3 Exercise: Vickrey with Reserve Price 118 6.3 The general mechanism design problem 118 6.4 Social Welfare Maximization 121 6.5 Win/Lose Mechanism Design 125 6.6 Profit Maximization in Win/Lose Settings 126 6.6.1 Profit maximization in digital goods auctions 127 6.6.2 Profit Extraction 128 6.6.3 A profit-making digital goods auction 129 iv Contents 6.6.4 With priors: the Bayesian setting 131 6.6.5 Revenue Equivalence 134 6.6.6 The revelation principle 136 6.6.7 Optimal Auctions 137 7 Stable matching 140 7.1 Introduction 140 7.2 Algorithms for finding stable matchings 141 7.3 Properties of stable matchings 142 7.4 A special preference order case 143 8 Coalitions and Shapley value 146 8.1 The Shapley value and the glove market 146 8.2 The Shapley value 150 8.3 Two more examples 152 9 Interactive Protocols 155 9.1 Keeping the meteorologist honest 155 9.2 Secret sharing 158 9.2.1 A simple secret sharing method 159 9.2.2 Polynomial method 160 9.3 Private computation 162 9.4 Cake cutting 163 9.5 Zero-knowledge proofs 164 9.6 Remote coin tossing 166 10 Combinatorial games 168 10.1 Impartial games 169 10.1.1 Nim and Bouton’s solution 175 10.1.2 Other impartial games 178 10.1.3 Impartial games and the Sprague-Grundy theorem 186 10.2 Partisan games 192 10.2.1 The game of Hex 195 10.2.2 Topology and Hex: a path of arrows* 196 10.2.3 Hex and Y 198 10.2.4 More general boards* 200 10.2.5 Other partisan games played on graphs 201 10.3 Brouwer’s fixed-point theorem via Hex 206 11 Random-turn and auctioned-turn games 212 11.1 Random-turn games defined 212 11.2 Random-turn selection games 213 11.2.1 Hex 213 Contents v 11.2.2 Bridg-It 214 11.2.3 Surround 215 11.2.4 Full-board Tic-Tac-Toe 215 11.2.5 Recursive majority 215 11.2.6 Team captains 216 11.3 Optimal strategy for random-turn selection games 217 11.4 Win-or-lose selection games 219 11.4.1 Length of play for random-turn Recursive Majority 220 11.5 Richman games 221 11.6 Additional notes on random-turn Hex 224 11.6.1 Odds of winning on large boards under biased play. 224 11.7 Random-turn Bridg-It 225 Bibliography 227 Index 231 1 Introduction In this course on game theory, we will be studying a range of mathematical models of conflict and cooperation between two or more agents. We begin with an outline of the content of this course. We begin with the classic two-person zero-sum games. In such games, both players move simultaneously, and depending on their actions, they each get a certain payoff. What makes these games “zero-sum” is that each player benefits only at the expense of the other. We will show how to find optimal strategies for each player in such games. These strategies will typically turn out to be a randomized choice of the available options. For example, in Penalty Kicks, a soccer/football-inspired zero-sum game, one player, the penalty-taker, chooses to kick the ball either to the left or to the right of the other player, the goal-keeper. At the same instant as the kick, the goal-keeper guesses whether to dive left or right. Fig. 1.1. The game of Penalty Kicks. The goal-keeper has a chance of saving the goal if he dives in the same direction as the kick. The penalty-taker, being left-footed, has a greater likelihood of success if he kicks left. The probabilities that the penalty kick scores are displayed in the table below: 1 2 Introduction goal-keeper L R L 0.8 1 R 1 0.5 penalty- taker For this set of scoring probabilities, the optimal strategy for the penalty- taker is to kick left with probability 5/7 and kick right with probability 2/7 — then regardless of what the goal-keeper does, the probability of scoring is 6/7. Similarly, the optimal strategy for the goal-keeper is to dive left with probability 5/7 and dive right with probability 2/7. In general-sum games, the topic of Chapter 3, we no longer have op- timal strategies. Nevertheless, there is still a notion of a “rational choice” for the players. A Nash equilibrium is a set of strategies, one for each player, with the property that no player can gain by unilaterally changing his strategy. It turns out that every general-sum game has at least one Nash equilibrium. The proof of this fact requires an important geometric tool, the Brouwer fixed-point theorem. One interesting class of general-sum games, important in computer sci- ence, is that of congestion games. In a congestion game, there are two drivers, I and II, who must navigate as quickly as possible through a con- gested network of roads. Driver I must travel from city B to city D, and driver II, from city A to city C. A D (1,2) (3,5) (2,4) (3,4) B C Fig. 1.2. A congestion game. Shown here are the commute times for the four roads connecting four cities. For each road, the first number is the commute time when only one driver uses the road, the second number is the commute time when two drivers use the road. The travel time for using a road is less when the road is less congested. In the ordered pair (t1,t2) attached to each road in the diagram below, t1 represents the travel time when only one driver uses the road, and t2 represents the travel time when the road is shared. For example, if drivers I and II both use road AB, with I traveling from A to B and II from B to A, then each must wait 5 units of time.
Recommended publications
  • Game Theory Lecture Notes
    Game Theory: Penn State Math 486 Lecture Notes Version 2.1.1 Christopher Griffin « 2010-2021 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License With Major Contributions By: James Fan George Kesidis and Other Contributions By: Arlan Stutler Sarthak Shah Contents List of Figuresv Preface xi 1. Using These Notes xi 2. An Overview of Game Theory xi Chapter 1. Probability Theory and Games Against the House1 1. Probability1 2. Random Variables and Expected Values6 3. Conditional Probability8 4. The Monty Hall Problem 11 Chapter 2. Game Trees and Extensive Form 15 1. Graphs and Trees 15 2. Game Trees with Complete Information and No Chance 18 3. Game Trees with Incomplete Information 22 4. Games of Chance 24 5. Pay-off Functions and Equilibria 26 Chapter 3. Normal and Strategic Form Games and Matrices 37 1. Normal and Strategic Form 37 2. Strategic Form Games 38 3. Review of Basic Matrix Properties 40 4. Special Matrices and Vectors 42 5. Strategy Vectors and Matrix Games 43 Chapter 4. Saddle Points, Mixed Strategies and the Minimax Theorem 45 1. Saddle Points 45 2. Zero-Sum Games without Saddle Points 48 3. Mixed Strategies 50 4. Mixed Strategies in Matrix Games 53 5. Dominated Strategies and Nash Equilibria 54 6. The Minimax Theorem 59 7. Finding Nash Equilibria in Simple Games 64 8. A Note on Nash Equilibria in General 66 Chapter 5. An Introduction to Optimization and the Karush-Kuhn-Tucker Conditions 69 1. A General Maximization Formulation 70 2. Some Geometry for Optimization 72 3.
    [Show full text]
  • CSC304 Lecture 4 Game Theory
    CSC304 Lecture 4 Game Theory (Cost sharing & congestion games, Potential function, Braess’ paradox) CSC304 - Nisarg Shah 1 Recap • Nash equilibria (NE) ➢ No agent wants to change their strategy ➢ Guaranteed to exist if mixed strategies are allowed ➢ Could be multiple • Pure NE through best-response diagrams • Mixed NE through the indifference principle CSC304 - Nisarg Shah 2 Worst and Best Nash Equilibria • What can we say after we identify all Nash equilibria? ➢ Compute how “good” they are in the best/worst case • How do we measure “social good”? ➢ Game with only rewards? Higher total reward of players = more social good ➢ Game with only penalties? Lower total penalty to players = more social good ➢ Game with rewards and penalties? No clear consensus… CSC304 - Nisarg Shah 3 Price of Anarchy and Stability • Price of Anarchy (PoA) • Price of Stability (PoS) “Worst NE vs optimum” “Best NE vs optimum” Max total reward Max total reward Min total reward in any NE Max total reward in any NE or or Max total cost in any NE Min total cost in any NE Min total cost Min total cost PoA ≥ PoS ≥ 1 CSC304 - Nisarg Shah 4 Revisiting Stag-Hunt Hunter 2 Stag Hare Hunter 1 Stag (4 , 4) (0 , 2) Hare (2 , 0) (1 , 1) • Max total reward = 4 + 4 = 8 • Three equilibria ➢ (Stag, Stag) : Total reward = 8 ➢ (Hare, Hare) : Total reward = 2 1 2 1 2 ➢ ( Τ3 Stag – Τ3 Hare, Τ3 Stag – Τ3 Hare) 1 1 1 1 o Total reward = ∗ ∗ 8 + 1 − ∗ ∗ 2 ∈ (2,8) 3 3 3 3 • Price of stability? Price of anarchy? CSC304 - Nisarg Shah 5 Revisiting Prisoner’s Dilemma John Stay Silent Betray Sam
    [Show full text]
  • Evolutionary Game Theory: ESS, Convergence Stability, and NIS
    Evolutionary Ecology Research, 2009, 11: 489–515 Evolutionary game theory: ESS, convergence stability, and NIS Joseph Apaloo1, Joel S. Brown2 and Thomas L. Vincent3 1Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, 2Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA and 3Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, USA ABSTRACT Question: How are the three main stability concepts from evolutionary game theory – evolutionarily stable strategy (ESS), convergence stability, and neighbourhood invader strategy (NIS) – related to each other? Do they form a basis for the many other definitions proposed in the literature? Mathematical methods: Ecological and evolutionary dynamics of population sizes and heritable strategies respectively, and adaptive and NIS landscapes. Results: Only six of the eight combinations of ESS, convergence stability, and NIS are possible. An ESS that is NIS must also be convergence stable; and a non-ESS, non-NIS cannot be convergence stable. A simple example shows how a single model can easily generate solutions with all six combinations of stability properties and explains in part the proliferation of jargon, terminology, and apparent complexity that has appeared in the literature. A tabulation of most of the evolutionary stability acronyms, definitions, and terminologies is provided for comparison. Key conclusions: The tabulated list of definitions related to evolutionary stability are variants or combinations of the three main stability concepts. Keywords: adaptive landscape, convergence stability, Darwinian dynamics, evolutionary game stabilities, evolutionarily stable strategy, neighbourhood invader strategy, strategy dynamics. INTRODUCTION Evolutionary game theory has and continues to make great strides.
    [Show full text]
  • Potential Games. Congestion Games. Price of Anarchy and Price of Stability
    8803 Connections between Learning, Game Theory, and Optimization Maria-Florina Balcan Lecture 13: October 5, 2010 Reading: Algorithmic Game Theory book, Chapters 17, 18 and 19. Price of Anarchy and Price of Staility We assume a (finite) game with n players, where player i's set of possible strategies is Si. We let s = (s1; : : : ; sn) denote the (joint) vector of strategies selected by players in the space S = S1 × · · · × Sn of joint actions. The game assigns utilities ui : S ! R or costs ui : S ! R to any player i at any joint action s 2 S: any player maximizes his utility ui(s) or minimizes his cost ci(s). As we recall from the introductory lectures, any finite game has a mixed Nash equilibrium (NE), but a finite game may or may not have pure Nash equilibria. Today we focus on games with pure NE. Some NE are \better" than others, which we formalize via a social objective function f : S ! R. Two classic social objectives are: P sum social welfare f(s) = i ui(s) measures social welfare { we make sure that the av- erage satisfaction of the population is high maxmin social utility f(s) = mini ui(s) measures the satisfaction of the most unsatisfied player A social objective function quantifies the efficiency of each strategy profile. We can now measure how efficient a Nash equilibrium is in a specific game. Since a game may have many NE we have at least two natural measures, corresponding to the best and the worst NE. We first define the best possible solution in a game Definition 1.
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • Potential Games and Competition in the Supply of Natural Resources By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ASU Digital Repository Potential Games and Competition in the Supply of Natural Resources by Robert H. Mamada A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved March 2017 by the Graduate Supervisory Committee: Carlos Castillo-Chavez, Co-Chair Charles Perrings, Co-Chair Adam Lampert ARIZONA STATE UNIVERSITY May 2017 ABSTRACT This dissertation discusses the Cournot competition and competitions in the exploita- tion of common pool resources and its extension to the tragedy of the commons. I address these models by using potential games and inquire how these models reflect the real competitions for provisions of environmental resources. The Cournot models are dependent upon how many firms there are so that the resultant Cournot-Nash equilibrium is dependent upon the number of firms in oligopoly. But many studies do not take into account how the resultant Cournot-Nash equilibrium is sensitive to the change of the number of firms. Potential games can find out the outcome when the number of firms changes in addition to providing the \traditional" Cournot-Nash equilibrium when the number of firms is fixed. Hence, I use potential games to fill the gaps that exist in the studies of competitions in oligopoly and common pool resources and extend our knowledge in these topics. In specific, one of the rational conclusions from the Cournot model is that a firm’s best policy is to split into separate firms. In real life, we usually witness the other way around; i.e., several firms attempt to merge and enjoy the monopoly profit by restricting the amount of output and raising the price.
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Banerjee, Abhijit; Weibull, Jörgen W. Working Paper Evolution and Rationality: Some Recent Game- Theoretic Results IUI Working Paper, No. 345 Provided in Cooperation with: Research Institute of Industrial Economics (IFN), Stockholm Suggested Citation: Banerjee, Abhijit; Weibull, Jörgen W. (1992) : Evolution and Rationality: Some Recent Game-Theoretic Results, IUI Working Paper, No. 345, The Research Institute of Industrial Economics (IUI), Stockholm This Version is available at: http://hdl.handle.net/10419/95198 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Ind ustriens Utred n i ngsi nstitut THE INDUSTRIAL INSTITUTE FOR ECONOMIC AND SOCIAL RESEARCH A list of Working Papers on the last pages No.
    [Show full text]
  • Strong Stackelberg Reasoning in Symmetric Games: an Experimental
    Strong Stackelberg reasoning in symmetric games: An experimental ANGOR UNIVERSITY replication and extension Pulford, B.D.; Colman, A.M.; Lawrence, C.L. PeerJ DOI: 10.7717/peerj.263 PRIFYSGOL BANGOR / B Published: 25/02/2014 Publisher's PDF, also known as Version of record Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Pulford, B. D., Colman, A. M., & Lawrence, C. L. (2014). Strong Stackelberg reasoning in symmetric games: An experimental replication and extension. PeerJ, 263. https://doi.org/10.7717/peerj.263 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 23. Sep. 2021 Strong Stackelberg reasoning in symmetric games: An experimental replication and extension Briony D. Pulford1, Andrew M. Colman1 and Catherine L. Lawrence2 1 School of Psychology, University of Leicester, Leicester, UK 2 School of Psychology, Bangor University, Bangor, UK ABSTRACT In common interest games in which players are motivated to coordinate their strate- gies to achieve a jointly optimal outcome, orthodox game theory provides no general reason or justification for choosing the required strategies.
    [Show full text]
  • Economics 201B Economic Theory (Spring 2021) Strategic Games
    Economics 201B Economic Theory (Spring 2021) Strategic Games Topics: terminology and notations (OR 1.7), games and solutions (OR 1.1-1.3), rationality and bounded rationality (OR 1.4-1.6), formalities (OR 2.1), best-response (OR 2.2), Nash equilibrium (OR 2.2), 2 2 examples × (OR 2.3), existence of Nash equilibrium (OR 2.4), mixed strategy Nash equilibrium (OR 3.1, 3.2), strictly competitive games (OR 2.5), evolution- ary stability (OR 3.4), rationalizability (OR 4.1), dominance (OR 4.2, 4.3), trembling hand perfection (OR 12.5). Terminology and notations (OR 1.7) Sets For R, ∈ ≥ ⇐⇒ ≥ for all . and ⇐⇒ ≥ for all and some . ⇐⇒ for all . Preferences is a binary relation on some set of alternatives R. % ⊆ From % we derive two other relations on : — strict performance relation and not  ⇐⇒ % % — indifference relation and ∼ ⇐⇒ % % Utility representation % is said to be — complete if , or . ∀ ∈ % % — transitive if , and then . ∀ ∈ % % % % can be presented by a utility function only if it is complete and transitive (rational). A function : R is a utility function representing if → % ∀ ∈ () () % ⇐⇒ ≥ % is said to be — continuous (preferences cannot jump...) if for any sequence of pairs () with ,and and , . { }∞=1 % → → % — (strictly) quasi-concave if for any the upper counter set ∈ { ∈ : is (strictly) convex. % } These guarantee the existence of continuous well-behaved utility function representation. Profiles Let be a the set of players. — () or simply () is a profile - a collection of values of some variable,∈ one for each player. — () or simply is the list of elements of the profile = ∈ { } − () for all players except . ∈ — ( ) is a list and an element ,whichistheprofile () .
    [Show full text]
  • ECONS 424 – STRATEGY and GAME THEORY MIDTERM EXAM #2 – Answer Key
    ECONS 424 – STRATEGY AND GAME THEORY MIDTERM EXAM #2 – Answer key Exercise #1. Hawk-Dove game. Consider the following payoff matrix representing the Hawk-Dove game. Intuitively, Players 1 and 2 compete for a resource, each of them choosing to display an aggressive posture (hawk) or a passive attitude (dove). Assume that payoff > 0 denotes the value that both players assign to the resource, and > 0 is the cost of fighting, which only occurs if they are both aggressive by playing hawk in the top left-hand cell of the matrix. Player 2 Hawk Dove Hawk , , 0 2 2 − − Player 1 Dove 0, , 2 2 a) Show that if < , the game is strategically equivalent to a Prisoner’s Dilemma game. b) The Hawk-Dove game commonly assumes that the value of the resource is less than the cost of a fight, i.e., > > 0. Find the set of pure strategy Nash equilibria. Answer: Part (a) • When Player 2 (in columns) chooses Hawk (in the left-hand column), Player 1 (in rows) receives a positive payoff of by paying Hawk, which is higher than his payoff of zero from playing Dove. − Therefore, for Player2 1 Hawk is a best response to Player 2 playing Hawk. Similarly, when Player 2 chooses Dove (in the right-hand column), Player 1 receives a payoff of by playing Hawk, which is higher than his payoff from choosing Dove, ; entailing that Hawk is Player 1’s best response to Player 2 choosing Dove. Therefore, Player 1 chooses2 Hawk as his best response to all of Player 2’s strategies, implying that Hawk is a strictly dominant strategy for Player 1.
    [Show full text]
  • Introduction to Game Theory I
    Introduction to Game Theory I Presented To: 2014 Summer REU Penn State Department of Mathematics Presented By: Christopher Griffin [email protected] 1/34 Types of Game Theory GAME THEORY Classical Game Combinatorial Dynamic Game Evolutionary Other Topics in Theory Game Theory Theory Game Theory Game Theory No time, doesn't contain differential equations Notion of time, may contain differential equations Games with finite or Games with no Games with time. Modeling population Experimental / infinite strategy space, chance. dynamics under Behavioral Game but no time. Games with motion or competition Theory Generally two player a dynamic component. Games with probability strategic games Modeling the evolution Voting Theory (either induced by the played on boards. Examples: of strategies in a player or the game). Optimal play in a dog population. Examples: Moves change the fight. Chasing your Determining why Games with coalitions structure of a game brother across a room. Examples: altruism is present in or negotiations. board. The evolution of human society. behaviors in a group of Examples: Examples: animals. Determining if there's Poker, Strategic Chess, Checkers, Go, a fair voting system. Military Decision Nim. Equilibrium of human Making, Negotiations. behavior in social networks. 2/34 Games Against the House The games we often see on television fall into this category. TV Game Shows (that do not pit players against each other in knowledge tests) often require a single player (who is, in a sense, playing against The House) to make a decision that will affect only his life. Prize is Behind: 1 2 3 Choose Door: 1 2 3 1 2 3 1 2 3 Switch: Y N Y N Y N Y N Y N Y N Y N Y N Y N Win/Lose: L W W L W L W L L W W L W L W L L W The Monty Hall Problem Other games against the house: • Blackjack • The Price is Right 3/34 Assumptions of Multi-Player Games 1.
    [Show full text]
  • Research on Pricing Strategy of Online Reverse Auction Based on Complete Information
    ISSN 1923-841X [Print] International Business and Management ISSN 1923-8428 [Online] Vol. 6, No. 2, 2013, pp. 71-76 www.cscanada.net DOI:10.3968/j.ibm.1923842820130602.1180 www.cscanada.org Research on Pricing Strategy of Online Reverse Auction Based on Complete Information LIU Zhongcheng[a],*; LI Hongyu[a] [a] Finance & Economics Department, Shandong University of Science & Glen Meakem is the earliest one who used online reverse Technology, Jinan City, Shandong Province, China. auction, which is innovative for traditional procurement *Corresponding author. mode. Reverse auction is one kind of procurement which Supported by National Natural Science Foundation Program (China) of makes a decision after the end of bidding. With the 2013, NO.71240003. intensification of the time effect on the procurement cost, reverse auction participants are not willing to wait for Received 17 March 2013; accepted 12 May 2013 the results for a long time. Waiting means that the time cost increases, as well as loss new purchases and sales Abstract opportunities, so online reverse auction was proposed. Aiming at the problem of reverse auction which involves Online reverse auction is that sellers arrive at different one buyer and multiple sellers in procurement market, time and bid, the decision whether to buy the bidders’ this paper studies about online reverse auction via internet goods needs to be made ​​immediately after the buyer during which different sellers arrive at different time and receives each bid. Reverse auction in application process bid, and the buyer makes decision whether to purchase gradually gets into transparent equalization. Buyers make after receiving each bid.
    [Show full text]