The Geologist's Guide to the Galaxy

Total Page:16

File Type:pdf, Size:1020Kb

The Geologist's Guide to the Galaxy NOVEMBER 19, 2019 The Geologist’s Guide to the Galaxy Fifty years after the first person walked on the moon, the relatively new field of planetary geology provides fresh insights into the origin of Earth, our solar system and the essence of life. By Paul A. Griffin WorldQuant, LLC 1700 East Putnam Ave. Third Floor Old Greenwich, CT 06870 www.weareworldquant.com 11.19.19 THE GEOLOGIST’S GUIDE TO THE GALAXY PERSPECTIVES PROLOGUE picture of what special conditions were present in our solar system IN THE FIELD OF PLANETARY GEOLOGY, 1969 WAS A TRANS- that generated the basis for life on Earth. This information may formational year. In early February, a meteorite fell near the not answer the probability-of-extraterrestrials question, but it village of Pueblito de Allende in northern Mexico, scattering does help us appreciate what factors make us unique and hence more than two tons of fusion-crusted stones over an area of better estimate the likelihood of similar life existing elsewhere in 75 square miles. Five months later, Apollo 11 made the first the universe. moon landing and brought 22 kilograms (48.5 pounds) of lunar material back to Earth. Then, at the end of September, To understand planetary geology, readers need to be familiar with a meteorite blazed over the southern Australian town of some astronomical objects, as these are the actors in our story. Our Murchison, showering more than 100 kilograms of rocks solar system consists of the four inner terrestrial planets (Mercury, containing amino acids essential for life. Venus, Earth and Mars), the main asteroid belt, the four ice giants (Jupiter, Saturn, Uranus and Neptune) and the Kuiper belt. The At the time, these three events may not have seemed to have asteroid belt is the ring of rocks, rubble and other material orbiting anything in common, but over the past 50 years the data collected the sun between Mars and Jupiter that, because of the velocities from them and similar occurrences have helped scientists piece generated by the gravitational resonances with Jupiter, cannot together answers to a cosmic puzzle. The questions they’ve pon- coalesce into larger bodies. Collisions in the asteroid belt can lead dered include: What processes led from the origin of the cosmos to material falling toward the terrestrial bodies, causing meteorite to the creation of our solar system? What caused the formation impacts on Earth. Most meteorites are mainly bits of asteroids, but of the moon? And what makes Earth so special that we have life, some come from Mars and our moon. which as far as we can tell seems to be unique in the universe? The Kuiper belt is a second outer ring, just beyond Neptune, and The potential existence of extraterrestrial life has long fascinated is much larger than the asteroid belt. While most asteroids are scientists. During a lunch with colleagues at the Los Alamos composed of rock and metal, the objects in the Kuiper belt are National Laboratory in 1950, physicist Enrico Fermi famously made up of ices, including methane, ammonia and water. Pluto, asked, “Where are they?” Fermi, who had won the Nobel Prize in which astronomers demoted to dwarf planet status in 2006, is a Physics in 1938, reasoned that some of the billions of stars in the member of the Kuiper belt. Comets (basically, cosmic snowballs) Milky Way similar to our sun should have had planets capable of are former members of the Kuiper belt originating from the farthest sustaining intelligent life. Furthermore, he posited, some of these region of our solar system, the Oort cloud. life forms should have developed advanced technologies capable of interstellar travel. Given that many of these stars are billions The sun is truly the center of our world, containing 99.86 percent of years old, there has been ample time for aliens to have visited of our solar system’s mass. (Jupiter and Saturn comprise more our planet, yet there are no signs of extraterrestrial life — the than 90 percent of the rest.) Jupiter, the largest planet, is about five Fermi paradox. times farther from the sun than Earth is, and most of the planets are locked into orbital period resonances with it. (Saturn, for example, In 1961, astrophysicist Frank Drake tried to quantify the answer is in a 2:5 resonance with Jupiter, meaning it orbits the sun twice to the Fermi paradox as a series of conditional probabilities even- for every five of Jupiter’s orbits.) tually leading to the detection of alien life. The Drake equation, which attempts to calculate the number of alien civilizations in the But our solar system represents a tiny corner of the universe. Milky Way capable of communicating with Earth, has been a core The Milky Way, our galaxy, has roughly 100 billion stars, some piece of the debate over the search for extraterrestrial intelligence larger and some smaller than our sun. The visible universe has (SETI). “A search of hundreds of thousands of stars in the hope of about 10,000 galaxies in each of its three dimensions, or 1 trillion detecting one message would require remarkable dedication and galaxies in total (10,0003).2 would probably take several decades,” Drake wrote in a January 1997 Scientific American article co-authored with renowned astron- PART 1: THE MOON omer Carl Sagan.1 On July 20, 1969, at 10:56 p.m. EDT, astronaut Neil Armstrong began climbing down the ladder of the Apollo 11 lunar module. More than two decades later, searching for a definitive answer Moments later, he proclaimed, “That’s one small step for a man, to Fermi’s question, thousands of people around the world are one giant leap for mankind.” Buzz Aldrin joined Armstrong on the using computers to monitor radio signals for signs of extrater- moon’s surface 19 minutes later. I watched these historic footsteps restrial intelligence through projects like SETI@home. Advances on a black-and-white television with my brother and parents at in planetary geology over the same period have provided a clearer home in Monterey, California. I was not alone: The first of six moon Copyright © 2019 WorldQuant, LLC November 2019 2 11.19.19 THE GEOLOGIST’S GUIDE TO THE GALAXY PERSPECTIVES Geology may be the most that after Armstrong said his famous words and inspected the lunar module exterior for damage, he gathered contingency lunar important science when it comes to samples and placed them in his collection bag in case an emergency understanding the formation of the ascent was required.3 If just this material had been recovered, the entire space program would have been a scientific success. moon and solar system. Fortunately, the Apollo moon missions brought back significantly more, a total of 220 kilograms of rocks,4 providing samples from landings was estimated to have been watched live by 600 million six sites chosen for their distinctive geological features. people, nearly one-fifth of the world’s population at the time. Late Heavy Bombardment Fifty years later, the Apollo 11 lunar mission is still one of mankind’s The moon’s surface is actually fairly homogeneous. When we look greatest scientific and technical accomplishments. For me, like at it with our naked eyes, the first thing that stands out are the many others, the event inspired an interest in the sciences most lunar maria (Latin for “seas”), multiple large dark impact craters clearly associated with the space program: physics and astronomy. so deep that they once generated volcanic outflows. The maria are Certainly, the space program deserves recognition for advancing surrounded by the highlands, or terrae, bright areas created by mete- those fields. But geology, the one science I did not appreciate at orite impacts that did not penetrate the moon’s crust. Rocks called the time of the lunar landings, may be the most important science regolith breccias5 make up some 80 percent of the lunar highlands, when it comes to understanding the formation of the moon and which almost completely cover the far side of the moon.6 (Earth solar system. In fact, the only Ph.D.-level scientist in the astronaut has regolith breccias as well, but they are not commonly seen due program who walked on the moon, Apollo 17’s Harrison (Jack) to the effects of weather and recycling of the surface.) Using fairly Schmitt, was a geologist. precise isotopic dating of the Apollo lunar samples, scientists were surprised to discover that the recovered breccias were created over a relatively narrow time period 3.9 billion to 4.0 billion years ago, MOONFALL during a period they called the Late Heavy Bombardment. Until 2018 This lunar meteorite found in Northwest Africa is similar it was accepted that nearly all of the visible craters on the moon were to the breccias collected by the Apollo missions. created during this period.7 However, recent analysis indicates that the formation of the moon’s craters may have occurred from 3.9 bil- lion to 4.4 billion years ago; the narrow range indicated by the Apollo samples may be due to the relative closeness of the landing sites. The Late Heavy Bombardment was a time of great turmoil and activity in the formation of our solar system. In fact, the asteroid bombardment affected Earth even more than the moon, but because of the recycling of Earth’s crust, it is not as obvious. Geologists have noticed for years that the rocks in the crust have an unusually large amount of iron-loving elements such as gold, palladium and platinum, which should have ended up in the planet’s core during the initial stages of its formation.
Recommended publications
  • South Pole-Aitken Basin: Crater Size-Frequency Distribution Measurements
    EPSC Abstracts Vol. 7 EPSC2012-832 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 South Pole-Aitken Basin: Crater Size-Frequency Distribution Measurements H. Hiesinger1, C. H. van der Bogert1, J. H. Pasckert1, N. Schmedemann2, M.S. Robinson3, B. Jolliff4, and N. Petro5; 1Institut für Planetologie (IfP), WWU Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany ([email protected]/ +49-251-8339057), 2Institute of Geosciences, Freie Universität Berlin, Germany, 3Arizona State University, Tempe, USA, 4Dept. of Earth and Planet. Sci. Washington Univ., St. Louis, USA, 5Goddard Spaceflight Center, Greenbelt, USA. Introduction morphology and topography derived from the LROC Being the largest basin (>2500 km in diameter) WAC mosaic and LOLA. LOLA topography was and presumably the oldest preserved impact structure also used to identify old and highly degraded impact on the Moon [e.g., 1], the South Pole-Aitken (SPA) structures and to improve our statistics in areas with basin is of particular interest. SPA might have large shadows close to the pole. The CSFDs were penetrated the entire lunar crust and exposed lower plotted with CraterStats [7], applying the lunar crustal or upper mantle material, but despite its deep chronology (CF) of [8] and the production function penetration, it did not reveal KREEP-rich rocks in (PF) of [9]. From this we derived absolute model contrast with the Imbrium basin. In addition, its age ages (AMAs) for craters between ~1.5 km and 300 should shed light on the plausibility of the terminal km in diameter [9]. More details on the technique of cataclysm [e.g., 2].
    [Show full text]
  • ESO's VLT Sphere and DAMIT
    ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away.
    [Show full text]
  • Fe,Mg)S, the IRON-DOMINANT ANALOGUE of NININGERITE
    1687 The Canadian Mineralogist Vol. 40, pp. 1687-1692 (2002) THE NEW MINERAL SPECIES KEILITE, (Fe,Mg)S, THE IRON-DOMINANT ANALOGUE OF NININGERITE MASAAKI SHIMIZU§ Department of Earth Sciences, Faculty of Science, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan § HIDETO YOSHIDA Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan § JOSEPH A. MANDARINO 94 Moore Avenue, Toronto, Ontario M4T 1V3, and Earth Sciences Division, Royal Ontario Museum, 100 Queens’s Park, Toronto, Ontario M5S 2C6, Canada ABSTRACT Keilite, (Fe,Mg)S, is a new mineral species that occurs in several meteorites. The original description of niningerite by Keil & Snetsinger (1967) gave chemical analytical data for “niningerite” in six enstatite chondrites. In three of those six meteorites, namely Abee and Adhi-Kot type EH4 and Saint-Sauveur type EH5, the atomic ratio Fe:Mg has Fe > Mg. Thus this mineral actually represents the iron-dominant analogue of niningerite. By analogy with synthetic MgS and niningerite, keilite is cubic, with space group Fm3m, a 5.20 Å, V 140.6 Å3, Z = 4. Keilite and niningerite occur as grains up to several hundred ␮m across. Because of the small grain-size, most of the usual physical properties could not be determined. Keilite is metallic and opaque; in reflected light, it is isotropic and gray. Point-count analyses of samples of the three meteorites by Keil (1968) gave the following amounts of keilite (in vol.%): Abee 11.2, Adhi-Kot 0.95 and Saint-Sauveur 3.4.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Formation Mechanisms of Ringwoodite: Clues from the Martian Meteorite
    Zhang et al. Earth, Planets and Space (2021) 73:165 https://doi.org/10.1186/s40623-021-01494-1 FULL PAPER Open Access Formation mechanisms of ringwoodite: clues from the Martian meteorite Northwest Africa 8705 Ting Zhang1,2, Sen Hu1, Nian Wang1,2, Yangting Lin1* , Lixin Gu1,3, Xu Tang1,3, Xinyu Zou4 and Mingming Zhang1 Abstract Ringwoodite and wadsleyite are the high-pressure polymorphs of olivine, which are common in shocked meteorites. They are the major constituent minerals in the terrestrial mantle. NWA 8705, an olivine-phyric shergottite, was heavily shocked, producing shock-induced melt veins and pockets associated with four occurrences of ringwoodite: (1) the lamellae intergrown with the host olivine adjacent to a shock-induced melt pocket; (2) polycrystalline assemblages preserving the shapes and compositions of the pre-existing olivine within a shock-induced melt vein (60 μm in width); (3) the rod-like grains coexisting with wadsleyite and clinopyroxene within a shock-induced melt vein; (4) the microlite clusters embedded in silicate glass within a very thin shock-induced melt vein (20 μm in width). The frst two occurrences of ringwoodite likely formed via solid-state transformation from olivine, supported by their mor- phological features and homogeneous compositions (Mg# 64–62) similar to the host olivine (Mg# 66–64). The third occurrence of ringwoodite might fractionally crystallize from the shock-induced melt, based on its heterogeneous and more FeO-enriched compositions (Mg# 76–51) than those of the coexisting wadsleyite (Mg# 77–67) and the host olivine (Mg# 66–64) of this meteorite. The coexistence of ringwoodite, wadsleyite, and clinopyroxene suggests a post- shock pressure of 14–16 GPa and a temperature of 1650–1750 °C.
    [Show full text]
  • Moon Minerals a Visual Guide
    Moon Minerals a visual guide A.G. Tindle and M. Anand Preliminaries Section 1 Preface Virtual microscope work at the Open University began in 1993 meteorites, Martian meteorites and most recently over 500 virtual and has culminated in the on-line collection of over 1000 microscopes of Apollo samples. samples available via the virtual microscope website (here). Early days were spent using LEGO robots to automate a rotating microscope stage thanks to the efforts of our colleague Peter Whalley (now deceased). This automation speeded up image capture and allowed us to take the thousands of photographs needed to make sizeable (Earth-based) virtual microscope collections. Virtual microscope methods are ideal for bringing rare and often unique samples to a wide audience so we were not surprised when 10 years ago we were approached by the UK Science and Technology Facilities Council who asked us to prepare a virtual collection of the 12 Moon rocks they loaned out to schools and universities. This would turn out to be one of many collections built using extra-terrestrial material. The major part of our extra-terrestrial work is web-based and we The authors - Mahesh Anand (left) and Andy Tindle (middle) with colleague have build collections of Europlanet meteorites, UK and Irish Peter Whalley (right). Thank you Peter for your pioneering contribution to the Virtual Microscope project. We could not have produced this book without your earlier efforts. 2 Moon Minerals is our latest output. We see it as a companion volume to Moon Rocks. Members of staff
    [Show full text]
  • Physical and Dynamical Properties of the Unusual V-Type Asteroid (2579) Spartacus Dagmara Oszkiewicz1, Agnieszka Kryszczynska´ 1, Paweł Kankiewicz2, Nicholas A
    A&A 623, A170 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833641 & © ESO 2019 Astrophysics Physical and dynamical properties of the unusual V-type asteroid (2579) Spartacus Dagmara Oszkiewicz1, Agnieszka Kryszczynska´ 1, Paweł Kankiewicz2, Nicholas A. Moskovitz3, Brian A. Skiff3, Thomas B. Leith3, Josef Durechˇ 4, Ireneusz Włodarczyk5, Anna Marciniak1, Stefan Geier6,7, Grigori Fedorets8, Volodymyr Troianskyi1,9, and Dóra Föhring10 1 Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznan,´ Poland e-mail: [email protected] 2 Institute of Physics, Astrophysics Division, Jan Kochanowski University, Swietokrzyska 15, 25-406 Kielce, Poland 3 Lowell Observatory, 14000 W Mars Hill Road, 86001 Flagstaff, AZ, USA 4 Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovickáchˇ 2, 18000 Prague 8, Czech Republic 5 Chorzów Astronomical Observatory MPC553, Chorzów, Polish Amateur Astronomical Society, Powstancow Wlkp. 34, 63-708 Rozdrazew, Poland 6 Gran Telescopio Canarias (GRANTECAN), Cuesta de San José s/n, 38712 Breña Baja, La Palma, Spain 7 Instituto de Astrofísica de Canarias, Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain 8 Department of Physics, Gustaf Hällströmin katu 2a, PO Box 64, 00014 University of Helsinki, Finland 9 Astronomical Observatory of Odessa I.I. Mechnikov National University, Marazlievskaya 1v, 65014 Odessa, Ukraine 10 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Received 14 June 2018 / Accepted 6 February 2019 ABSTRACT Context. Asteroid (2579) Spartacus is a small V-type object located in the inner main belt. This object shows spectral characteristics unusual for typical Vestoids, which may indicate an origin deeper than average within Vesta or an origin from an altogether different parent body.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Lunar Meteorites: Impact Melt and Regolith Breccias and Large-Scale Heterogeneities of the Upper Lunar Crust
    Meteoritics & Planetary Science 40, Nr 7, 989–1014 (2005) Abstract available online at http://meteoritics.org “New” lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust Paul H. WARREN*, Finn ULFF-MØLLER, and Gregory W. KALLEMEYN Institute of Geophysics, University of California—Los Angeles, Los Angeles, California 90095–1567, USA *Corresponding author. E-mail: [email protected] (Received 06 May 2002; revision accepted 24 April 2005) Abstract–We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy-fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly-brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact-melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact-melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact-heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3- incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16.
    [Show full text]
  • M Iei1canjlusellm PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK 24, N.Y
    jovitatesM iei1canJlusellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2173 APRIL I4, I964 The Chainpur Meteorite BY KLAUS KEIL,1 BRIAN MASON,2 H. B. WIIK,3 AND KURT FREDRIKSSON4 INTRODUCTION This remarkable meteorite fell on May 9, 1907, at 1.30 P.M. as a shower of stones at and near the village of Chainpur (latitude 210 51' N., longi- tude 83° 29' E.) on the Ganges Plain. Some 8 kilograms were recovered. The circumstances of the fall and the recovery of the stones, and a brief description of the material, were given by Cotter (1912). One of us (Mason), when examining the Nininger Meteorite Collection in Arizona State University in January, 1962, noticed the unusual ap- pearance of a fragment of this meteorite, particularly the large chondrules and the friable texture, and obtained a sample for further investigation. Shortly thereafter, Keil was studying the Nininger Meteorite Collection, also remarked on this meteorite, and began independently to investigate it. In the meantime, Mason had sent a sample to Wiik for analysis. Under these circumstances, it seems desirable to report all these investi- gations in a single paper. 1 Ames Research Center, Moffett Field, California. 2 Chairman, Department of Mineralogy, the American Museum of Natural History. 3Research Associate, Department of Mineralogy, the American Museum of Natural History. 4Scripps Institution of Oceanography, La Jolla. 2 AMERICAN MUSEUM NOVITATES NO. 2173 FIG. 1. Photomicrograph of a thin section of the Chainpur meteorite, showing chondrules of olivine and pyroxene in a black matrix.
    [Show full text]
  • Exploring the Geology of a New Differentiated Basaltic Asteroid
    BUNBURRA ROCKHOLE: EXPLORING THE GEOLOGY OF A NEW DIFFERENTIATED BASALTIC ASTEROID. G.K. Benedix1,7, P.A. Bland1,7, J. M. Friedrich2,3, D.W. Mittlefehldt4, M.E. Sanborn5, Q.-Z. Yin5, R.C. Greenwood6, I.A. Franchi6, A.W.R. Bevan7, M.C. Towner1 and Grace C. Perotta2. 1Dept. Applied Geology, Curtin University, GPO Box U1987, Perth, WA, 6845 Australia ([email protected]), 2Dept. Chem., Fordham University, 441 East Fordham Road, Bronx, NY 10458 USA, 3Dept. Earth & Planetary Sciences, American Museum of Natural History, New York, NY 10024, USA, 4NASA/Johnson Space Center, Houston, TX, USA, 5Dept. of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA, 6Planetary & Space Sci., The Open University, Milton Keynes, MK7 6AA, UK, 7Western Australia Museum, Locked Bag 49, Welshpool, WA, 6986, Australia. Introduction: Bunburra Rockhole (BR) is the first versity for chemical analysis. Four of these were ana- recovered meteorite of the Desert Fireball Network [1]. lysed for major and trace elements and two for trace It was initially classified as a basaltic eucrite, based on elements only. Two of these subsamples (A/1 and texture, mineralogy, and mineral chemistry [2] but C/A/2) were analysed at UC Davis to investigate the Cr subsequent O isotopic analyses showed that BR’s isotopic systematics. Homogenized powders from the composition lies significantly far away from the HED two chips were dissolved in Parr bombs for a 96 hour group of meteorites (fig. 1) [1]. This suggested that period at 200°C to insure complete dissolution of re- BR was not a piece of the HED parent body (4 Vesta), fractory minerals such as spinel.
    [Show full text]
  • Petrography and Geochemistry of the Enriched Basaltic Shergottite Northwest Africa 2975
    Meteoritics & Planetary Science 50, Nr 12, 2024–2044 (2015) doi: 10.1111/maps.12571 Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975 Qi HE1*, Long XIAO1, J. Brian BALTA2, Ioannis P. BAZIOTIS3, Weibiao HSU4, and Yunbin GUAN5 1Planetary Science Institute, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China 2Department of Geology and Planetary Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15217, USA 3Agricultural University of Athens, Laboratory of Mineralogy and Geology, Athens 11855, Greece 4Laboratory for Astrochemistry and Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA *Corresponding author. E-mail: [email protected] (Received 30 July 2013; revision accepted 30 September 2015) Abstract–We present a study of the petrology and geochemistry of basaltic shergottite Northwest Africa 2975 (NWA 2975). NWA 2975 is a medium-grained basalt with subophitic to granular texture. Electron microprobe (EMP) analyses show two distinct pyroxene compositional trends and patchy compositional zoning patterns distinct from those observed in other meteorites such as Shergotty or QUE 94201. As no bulk sample was available to us for whole rock measurements, we characterized the fusion crust and its variability by secondary ion mass spectrometer (SIMS) measurements and laser ablation inductively coupled plasma spectroscopy (LA-ICP-MS) analyses as a best-available proxy for the bulk rock composition. The fusion crust major element composition is comparable to the bulk composition of other enriched basaltic shergottites, placing NWA 2975 within that sample group. The CI-normalized REE (rare earth element) patterns are flat and also parallel to those of other enriched basaltic shergottites.
    [Show full text]