Genetic Rescue of Small Inbred Populations: Meta- Analysis Reveals Large and Consistent Benefits of Gene flow

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Rescue of Small Inbred Populations: Meta- Analysis Reveals Large and Consistent Benefits of Gene flow Molecular Ecology (2015) 24, 2610–2618 doi: 10.1111/mec.13139 FROM THE COVER Genetic rescue of small inbred populations: meta- analysis reveals large and consistent benefits of gene flow RICHARD FRANKHAM*† *Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia, †Australian Museum, 6 College St, Sydney, NSW 2010, Australia Abstract Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta-analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The med- ian increase in composite fitness (combined fecundity and survival) following out- crossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal DF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, bene- fits did not differ significantly among invertebrates, vertebrates and plants. Evolution- ary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guide- lines for the management of genetic rescue attempts. Keywords: evolutionary potential, genetic rescue guidelines, heterosis, inbreeding depression, outbreeding depression, outcrossing Received 2 January 2015; revision received 26 February 2015; accepted 27 February 2015 laboratory and agricultural species (heterosis: Sinha & Introduction Khanna 1975; Falconer & Mackay 1996; Frankham Many species have isolated populations that are subject to et al. 2010). For example, heterosis has been funda- inbreeding, loss of genetic diversity and elevated extinction mental to the green revolution that has substantially risks (Frankham et al. 2014). Genetic theory indicates that it increased crop plant yields (Borlaug 2000). Despite should often be possible to genetically rescue such popula- this, only ~ 10–20 genetic rescues have been tions by outcrossing within species (augmenting gene flow: attempted for conservation purposes (Adams et al. Tallmon et al. 2004; Whiteley et al. 2015). However, out- 2011; Frankham et al. 2011), probably a miniscule pro- crossing can also be deleterious (outbreeding depression: portion of the populations that might benefit from Edmands 2007; Frankham et al. 2011). outcrossing (Frankham et al. 2014). The limited use of Crossing of populations has frequently been genetic rescue is probably due to concerns about the used to successfully reverse inbreeding depression in following: Correspondence: Richard Frankham, Fax: 612-9850-8245; 1 outbreeding depression/upsetting local genetic adap- E-mail: [email protected] tation/local purity and provenance, © 2015 John Wiley & Sons Ltd GENETIC RESCUE OF SMALL INBRED POPULATIONS 2611 2 limited quantitative information on the expected con- magnitude of the effect and (iii) whether the screen for sequences of outcrossing, outbreeding depression proposed by Frankham et al. 3 lack of clear guidelines, (2011) is effective in such circumstances. Genetic rescue 4 costs, effects were evaluated for both fitness and ability to 5 risks of disease, pest and parasite spread, evolve (especially in changing environments). 6 disrupting social systems in some animals, 7 moving biological material across political jurisdic- Materials and methods tions, 8 regulatory barriers. Data selection criteria The first three are primarily genetic issues, while the Studies were screened to identify relevant data sets that remainder require consideration, but are rarely insuper- encompassed the following: able barriers to gene flow (see Discussion). Frankham et al. (2011) developed a decision tree for predicting the 1 a parental (target) population known or presumed to risk of outbreeding depression and provided prelimin- be inbred and/or having low genetic diversity, ary evidence that it was effective. This contribution fo- 2 gene flow into the inbred population from one or cusses on the second and third issues. more other (inbred or outbred) populations geneti- Information on the magnitude and consistency of cally isolated from the target population, but belong- genetic rescue effects is critical for cost/benefit analyses ing to the same species, of alternative conservation management options for 3 fitness and/or evolutionary potential data on the fragmented populations. Here, I address this issue inbred and outcrossed populations, using a meta-analysis, a tool widely used to overcome 4 sexually reproducing species, as strictly asexual spe- low statistical power in individual studies and to obtain cies do not experience inbreeding depression, hetero- comprehensive quantitative overviews (Frankham et al. sis or outbreeding depression, 2010; Koricheva et al. 2013). In practice, genetic rescues 5 populations where crosses were assessed as having a are only contemplated for populations with elevated low risk of outbreeding depression, using the Frank- inbreeding and/or reduced genetic diversity, so my ham et al. (2011) decision tree (same species, no fixed study was restricted to them. As both beneficial and chromosomal differences, adapted to similar environ- deleterious effects can occur simultaneously, the practi- ments and gene flow within the last 500 years), cal issue is whether the net effects of outcrossing on fit- 6 wild species, not ones used in plant or animal agri- ness are beneficial or deleterious. culture, forestry or aquaculture and subjected to As genetic rescue for fitness in the absence of out- strong artificial selection (in case domestic species breeding depression involves the reversal of inbreeding have different characteristics to wild ones: Frankham depression (Wright 1977; Vrijenhoek 1994; Falconer & 2009). Mackay 1996), the variables affecting it are expected to be the same as those that predict inbreeding depression, Further details of data selection criteria are given in but with effects in the opposite direction (see Appendix Appendix S3 (Supporting information). S1, Supporting information). Thus, genetic rescue is expected to depend upon the difference in inbreeding Sources of data coefficients between the inbred and outcrossed popula- D D tions in mothers ( Fm) and in zygotes ( Fz), on the Data were obtained from (i) studies already known to environment where the effects are measured (stressful > me; (ii) references in 35 reviews on genetic rescue, out- benign), to be greater for naturally outbreeding than breeding depression and related issues; (iii) 40 inbreeding species and for outbred than inbred immi- advanced level textbooks, research monographs and sci- grants. Genetic rescue effects should be greater in the entific meeting proceedings; (iv) keyword searches for F1 than the F2 and later generations for traits deter- both genetic rescue/heterosis, outbreeding depression mined by the zygotic genotype, but show the opposite and related terms in Google Scholar and Web of Science pattern for traits determined by maternal genotype (see and (v) further references cited within > 400 studies Appendix S2, Supporting information). identified by all the above means. The aims of this study were to determine the follow- The data search revealed 156 comparisons of out- ing: (i) the consistency and magnitude of effects of bred/inbred fitness from 77 taxa (18 invertebrates, 15 outcrossing small inbred populations to another popula- vertebrates and 44 plants) (Table S1, Supporting infor- tion within species (where the cross had a low risk of mation) with references from Darwin (1876) to January outbreeding depression); (ii) variables affecting the 2014. Only fourteen of the taxa were described by the © 2015 John Wiley & Sons Ltd 2612 R. FRANKHAM authors as belonging to a threatened category, and only (see below), (3) data points of (2) that had information a small proportion of crosses were likely performed for on all predictor variables, (4) composite fitness data conservation purposes. Gene flow into inbred popula- with pseudoreplication minimized and (5) data points tions ranged from a single immigrant to crosses with from (4) that had complete information on all predic- several other isolated populations (immigration levels tor variables and restricted to outbreeders (as the of 0.025–0.94). There were only six comparisons found single entry for an inbreeding species was insufficient to for evolutionary potential for fitness traits, all for inver- allow testing of mating system effects). The entries used tebrates (Table S2, Supporting information). in each data set are identified in Table S1 (Supporting information). Pseudoreplication was minimized by reducing the Effect sizes data set to a single entry per inbred/outbred popula- The ratio of mean fitness in outcrossed/inbred popula- tion comparison [usually the one with the greatest sta- tions [genetic
Recommended publications
  • Priority Actions to Improve Provenance Decision-Making
    Forum Priority Actions to Improve Provenance Decision-Making MARTIN F. BREED, PETER A. HARRISON, ARMIN BISCHOFF, PAULA DURRUTY, NICK J. C. GELLIE, EMILY K. GONZALES, KAYRI HAVENS, MARION KARMANN, FRANCIS F. KILKENNY, SIEGFRIED L. KRAUSS, ANDREW J. LOWE, PEDRO MARQUES, PAUL G. NEVILL, PATI L. VITT, AND ANNA BUCHAROVA Selecting the geographic origin—the provenance—of seed is a key decision in restoration. The last decade has seen a vigorous debate on whether to use local or nonlocal seed. The use of local seed has been the preferred approach because it is expected to maintain local adaptation and avoid deleterious population effects (e.g., maladaptation and outbreeding depression). However, the impacts of habitat fragmentation and climate change on plant populations have driven the debate on whether the local-is-best standard needs changing. This debate has largely been theoretical in nature, which hampers provenance decision-making. Here, we detail cross-sector priority actions to improve provenance decision-making, including embedding provenance trials into restoration projects; developing dynamic, evidence-based provenance policies; and establishing stronger research–practitioner collaborations to facilitate the adoption of research outcomes. We discuss how to tackle these priority actions in order to help satisfy the restoration sector’s requirement for appropriately provenanced seed. Keywords: assisted migration, ecological restoration, local adaptation, restoration genetics he restoration sector’s demand for seed is Williams et al. 2014, Havens et al. 2015, Prober et al. 2015, Tenormous and is rapidly increasing with the growth Breed et al. 2016b, Christmas et al. 2016b). in the global restoration effort (Verdone and Seidl 2017).
    [Show full text]
  • Genetic and Demographic Dynamics of Small Populations of Silene Latifolia
    Heredity (2003) 90, 181–186 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic and demographic dynamics of small populations of Silene latifolia CM Richards, SN Emery and DE McCauley Department of Biological Sciences, Vanderbilt University, PO Box 1812, Station B, Nashville, TN 37235, USA Small local populations of Silene alba, a short-lived herbac- populations doubled in size between samples, while others eous plant, were sampled in 1994 and again in 1999. shrank by more than 75%. Similarly, expected heterozygosity Sampling included estimates of population size and genetic and allele number increased by more than two-fold in diversity, as measured at six polymorphic allozyme loci. individual populations and decreased by more than three- When averaged across populations, there was very little fold in others. When population-specific change in number change between samples (about three generations) in and change in measures of genetic diversity were considered population size, measures of within-population genetic together, significant positive correlations were found be- diversity such as number of alleles or expected hetero- tween the demographic and genetic variables. It is specu- zygosity, or in the apportionment of genetic diversity within lated that some populations were released from the and among populations as measured by Fst. However, demographic consequences of inbreeding depression by individual populations changed considerably, both in terms gene flow. of numbers of individuals and genetic composition. Some Heredity (2003) 90, 181–186. doi:10.1038/sj.hdy.6800214 Keywords: genetic diversity; demography; inbreeding depression; gene flow Introduction 1986; Lynch et al, 1995), the interaction of genetics and demography could also influence population persistence How genetics and demography interact to influence in common species, because it is generally accepted that population viability has been a long-standing question in even many abundant species are not uniformly distrib- conservation biology.
    [Show full text]
  • Modeling Factors Affecting the Severity of Outbreeding Depression
    Modeling Factors Affecting the Severity of Outbreeding Depression SUZANNE EDMANDS* AND CHARLES C. TIMMERMAN† *Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, U.S.A., email [email protected] †997 West 30th Street, Los Angeles CA 90007, U.S.A. Abstract: Hybridization between populations may cause either increased fitness (“hybrid vigor”) or de- creased fitness (“outbreeding depression”). Translocation between populations may therefore in some cases be a successful means of combating genetic erosion and preserving evolutionary potential, whereas in other cases it may make the situation worse by inducing outbreeding depression. Because genetic distance alone is a poor predictor of the success or failure of hybridization, we developed a computer model (ELAB) to explore other factors affecting the consequences of hybridization. Our model simulates diploid, unisexual popula- tions following Mendelian rules, and in this study we used it to test the effect of a variety of parameters on both the magnitude and duration of outbreeding depression. We focused our simulations on the effects of (1) divergence between populations, (2) the genetic basis of outbreeding depression (disruption of local adap- tation vs. intrinsic coadaptation), (3) population parameters such as mutation rate and recombination rate, and (4) alternative management schemes (50:50 mixture vs. one migrant per generation). The magnitude of outbreeding depression increased linearly with genetic distance, whereas the duration of outbreeding de- pression showed a more complex curvilinear relationship. With genetic distance held constant, magnitude in- creased with larger population size, lower mutation rate, cross-fertilization, and higher recombination rate, whereas duration increased with larger population size and partial self-fertilization.
    [Show full text]
  • Purebred Dog Breeds Into the Twenty-First Century: Achieving Genetic Health for Our Dogs
    Purebred Dog Breeds into the Twenty-First Century: Achieving Genetic Health for Our Dogs BY JEFFREY BRAGG WHAT IS A CANINE BREED? What is a breed? To put the question more precisely, what are the necessary conditions that enable us to say with conviction, "this group of animals constitutes a distinct breed?" In the cynological world, three separate approaches combine to constitute canine breeds. Dogs are distinguished first by ancestry , all of the individuals descending from a particular founder group (and only from that group) being designated as a breed. Next they are distinguished by purpose or utility, some breeds existing for the purpose of hunting particular kinds of game,others for the performance of particular tasks in cooperation with their human masters, while yet others owe their existence simply to humankind's desire for animal companionship. Finally dogs are distinguished by typology , breed standards (whether written or unwritten) being used to describe and to recognize dogs of specific size, physical build, general appearance, shape of head, style of ears and tail, etc., which are said to be of the same breed owing to their similarity in the foregoing respects. The preceding statements are both obvious and known to all breeders and fanciers of the canine species. Nevertheless a correct and full understanding of these simple truisms is vital to the proper functioning of the entire canine fancy and to the health and well being of the animals which are the object of that fancy. It is my purpose in this brief to elucidate the interrelationship of the above three approaches, to demonstrate how distortions and misunderstandings of that interrelationship now threaten the health of all of our dogs and the very existence of the various canine breeds, and to propose reforms which will restore both balanced breed identity and genetic health to CKC breeds.
    [Show full text]
  • Pedigree Analysis and Optimisation of the Breeding Programme of the Markiesje and the Stabyhoun
    Pedigree analysis and optimisation of the breeding programme of the Markiesje and the Stabyhoun Aiming to improve health and welfare and maintain genetic diversity Harmen Doekes REG.NR.: 920809186050 Major thesis Animal Breeding and Genetics (ABG-80436) January, 2016 Supervisors/examiners: Piter Bijma - Animal Breeding and Genomics Centre, Wageningen University Kor Oldenbroek - Centre for Genetic Resources the Netherlands (CGN), Wageningen UR Jack Windig - Animal Breeding & Genomics Centre, Wageningen UR Livestock Research Thesis: Animal Breeding and Genomics Centre Pedigree analysis and optimisation of the breeding programme of the Markiesje and the Stabyhoun Aiming to improve health and welfare and maintain genetic diversity Harmen Doekes REG.NR.: 920809186050 Major thesis Animal Breeding and Genetics (ABG-80436) January, 2016 Supervisors: Kor Oldenbroek - Centre for Genetic Resources the Netherlands (CGN), Wageningen UR Jack Windig - Animal Breeding & Genomics Centre, Wageningen UR Livestock Research Examiners: Piter Bijma - Animal Breeding and Genomics Centre, Wageningen University Kor Oldenbroek - Centre for Genetic Resources the Netherlands (CGN), Wageningen UR Commissioned by: Nederlandse Markiesjes Vereniging Nederlandse Vereniging voor Stabij- en Wetterhounen Preface This major thesis is submitted in partial fulfilment of the requirements for the degree of Master of Animal Sciences of Wageningen University, the Netherlands. It comprises an unpublished study on the genetic status of two Dutch dog breeds, the Markiesje and the Stabyhoun. that was commissioned by the Breed Clubs of the breeds, the ‘Nederlandse Markiesjes Vereniging’ and the ‘Nederlandse Vereniging voor Stabij- en Wetterhounen’. It was written for readers with limited pre-knowledge. Although the thesis focusses on two breeds, it addresses issues that are found in many dog breeds.
    [Show full text]
  • The Ghost of Outcrossing Past in Downy Brome, an Inbreeding Annual Grass
    Journal of Heredity 2013:104(4):476–490 Published by Oxford University Press on behalf of The American Genetic doi:10.1093/jhered/est019 Association 2013. This work is written by (a) US Government employee(s) Advance Access publication April 5, 2013 and is in the public domain in the US. The Ghost of Outcrossing Past in Downy Brome, an Inbreeding Annual Grass SUSAN E. MEYER, SUDEEP GHIMIRE, SAMUEL DECKER, KEITH R. MERRILL, AND CRAIG E. COLEMAN From the Shrub Sciences Laboratory, US Forest Service, Rocky Mountain Research Station, 735 North 500 East, Provo, UT 84606 (Meyer); Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT (Ghimire, Decker, and Coleman); and Center for Plant Breeding and Applied Plant Genomics, North Carolina State University, Raleigh, NC (Merrill). Address correspondence to Susan Meyer at the address above, or e-mail: [email protected] Abstract We investigated the frequency of outcrossing in downy brome (Bromus tectorum L.), a cleistogamous weedy annual grass, in both common garden and wild populations, using microsatellite and single nucleotide polymorphic (SNP) markers. In the common garden study, 25 lines with strongly contrasting genotypes were planted in close proximity. We fingerprinted 10 seed progeny from 8 individuals of each line and detected 15 first-generation heterozygotes for a t-value (corrected for cryptic crosses) of 0.0082. Different genotypes were significantly overrepresented as maternal versus paternal parents of heterozy- gotes, suggesting gender–function-dependent genetic control of outcrossing rates. In 4 wild populations (>300 individuals each), expected heterozygosity ranged from 0.149 to 0.336, whereas t-values ranged from 0.0027 to 0.0133, indicating high levels of both genetic diversity and inbreeding.
    [Show full text]
  • Examining Genetic Diversity, Outbreeding Depression, and Local Adaptation in a Native Fish Reintroduction Program a DISSERTATION
    Examining genetic diversity, outbreeding depression, and local adaptation in a native fish reintroduction program A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY DAVID DERLAND HUFF IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BRUCE VONDRACEK AND RAYMOND M. NEWMAN, CO-ADVISORS May 2010 © David Derland Huff, 2010 Acknowledgements I am grateful to so many people for their contributions to my work and well-being during my time at the University of Minnesota that is difficult for me to know where to begin. I will start with Bruce Vondracek, who was very involved in this research and went out of his way to make himself available, even on short notice. He was instrumental in helping me obtain resources and funding for research and somehow scrounged funds for travel on every occasion that I asked for it. We also enjoyed many fishing trips in which we cumulatively landed thousands of trout. He always out-fished me no matter how hard I tried, except once, thanks to one ugly little green fly. Austen Cargill II provided me with a fellowship (and the aforementioned green fly) for the duration of my time in Minnesota and was also present on most of our fishing trips. I would like to thank him for this funding and for his generous hospitality, interesting conversations, and valuable fly-fishing advice. Funding was also provided by a doctoral dissertation fellowship from the Graduate School of the University of Minnesota. The Minnesota Department of Natural Resources, U.S.
    [Show full text]
  • <I>Steinernema Carpocapsae
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2011 Outcrossing and crossbreeding recovers deteriorated traits in laboratory cultured Steinernema carpocapsae nematodes John M. Chaston Brigham Young University Adler R. Dillman Brigham Young University David I. Shapiro-Ilan USDA-ARS Anwar L. Bilgrami Rutgers University Randy Gaugler Rutgers University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Chaston, John M.; Dillman, Adler R.; Shapiro-Ilan, David I.; Bilgrami, Anwar L.; Gaugler, Randy; Hopper, Keith R.; and Adams, Byron J., "Outcrossing and crossbreeding recovers deteriorated traits in laboratory cultured Steinernema carpocapsae nematodes" (2011). Publications from USDA-ARS / UNL Faculty. 842. https://digitalcommons.unl.edu/usdaarsfacpub/842 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors John M. Chaston, Adler R. Dillman, David I. Shapiro-Ilan, Anwar L. Bilgrami, Randy Gaugler, Keith R. Hopper, and Byron J. Adams This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdaarsfacpub/842 International Journal for Parasitology 41 (2011) 801–809 Contents lists available at ScienceDirect International Journal for Parasitology journal homepage: www.elsevier.com/locate/ijpara Outcrossing and crossbreeding recovers deteriorated traits in laboratory cultured Steinernema carpocapsae nematodes John M.
    [Show full text]
  • Revegetation Priorities D
    Revegetation Priorities D. Terrance Booth and Kenneth P. Vogel Introduction A cultivar is a variety, strain, or population of known genetic Revegetation is a needed means of mitigating man-made and origin, produced under cultivation in a way to ensure its natural disturbance. Our current ability to address environ- genetic integrity is maintained. mental insults contrasts sharply with that existing when John Muir fi rst sowed the roots of environmental awareness or Aldo Leopold and Hugh H. Bennett inspired a land ethic and a sense of stewardship. We now have considerable revegeta- There is agreement among land managers, Federal and tion science and experience and—equally important—viable state agencies, conservation groups, and scientists that the native-seed and revegetation industries expert in repairing decisions should be based on research and science. There are environmental damage. Through the National Plant Mate- hundreds of species on the rangelands of North America and rials program, related and usually cooperative work within rigorous genetic and adaptation studies have been conducted state universities and other entities, and the development of on only a few, so the scientifi c information base is small in ecological service industries, our society has heeded Leop- comparison to that of cultivated crops. Our intent here is to old’s call to take pride in the “husbandry” of wild plants.1 Yet, summarize key aspects of this problem, suggest some potential wild-plant husbandry is now being questioned, as is the wis- approaches and solutions, and encourage further research. dom of much of the knowledge, experience, and use of plant materials developed over the past 3 to 5 decades.
    [Show full text]
  • Let's Talk Linebreeding
    Course #304 Dog Breeding Basenji University “Preserving Our Past and Educating Our Future” Let’s Talk Linebreeding Claudia Waller Orlandi, Ph.D. Claudia Waller Orlandi, Ph.D. has been in dogs for 40 years and is well known for her Topsfield Bassets. She was 2009 AKC Breeder of the Year. She has a background in education. She writes and lectures frequently. Copyright by the author From Tally Ho. July-August 1997 One of the most bandied about terms among Basset Hound breeders today seems to be linebreeding. Despite its widespread use, however, linebreeding is frequently misunderstood and miscommunicated; in fact, it is not altogether uncommon for an outcrossed pedigree to be mistakenly viewed as linebreeding by the novice. The present discussion defines linebreeding and how we can more accurately describe our linebred litters. LINEBREEDING AND INBREEDING: A FAMILY AFFAIR INBREEDING and LINEBREEDING involve the mating of animals within the same family. Breeding relatives is used to cement traits, the goal being to make the offspring homozygous (pure) for desirable characteristics. Homozygous dogs tend to be prepotent and produce offspring that look like themselves (Walkowicz & Wilcox 1994). Willis (1989) defines INBREEDING as the mating of animals "more closely related to one another than the average relationship within the breed." Inbred pairings would include brother/sister (the closest form), father/daughter, mother/son and half-brother/half-sister. LINEBREEDING involves breeding relatives other than the individual parents or brothers and sisters. Typical linebred matings are grandfather/granddaughter, grandmother/grandson, grandson/granddaughter, great-granddaughter/great-grandson, uncle/niece, aunt/nephew and cousin crosses.
    [Show full text]
  • Heterosis from Local Drift Load Is Likely Insufficient to Favor Reversions To
    bioRxiv preprint doi: https://doi.org/10.1101/273946; this version posted February 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Heterosis from local drift load is likely insufficient to favor reversions to outcrossing Abstract 2 The evolutionary trajectory from cross- to self-fertilization is widely documented in nature, but re- sults from several taxa also suggest that outcrossing may evolve in a formerly selfing population. Pop- 4 ulation genetic theory explains that selfing can evolve when its advantages overcome its immediate cost of inbreeding depression, but that this process will not run in reverse because a self-fertilizing population 6 purges itself of inbreeding depression. That is, the primary short-term advantage of cross-fertilization over self-fertilization depends on the existence of deleterious alleles exposed upon inbreeding. Here, 8 we explore whether outcrossing can evolve in selfing populations if allelic variation exists as divergence among populations. We consider two monomorphic populations of entirely self-fertilizing individuals, 10 introduce a modifier allele that increases the rate of cross-fertilization, and investigate whether the het- erosis among populations is sufficient for the modifier to invade and fix. We find that, despite an initial 12 increase in the frequency of the outcrossing modifier, its fixation is possible only when populations har- bor extremely large unique fixed genetic loads. These rare reversions to outcrossing become more likely 14 as the load becomes more polygenic, or when the modifier appears on a rare background, such as by dispersal of an outcrossing genotype into a selfing population.
    [Show full text]
  • Evaluating the Relative Risks of Inbreeding and Outbreeding for Conservation and Management
    Molecular Ecology (2007) 16, 463–475 doi: 10.1111/j.1365-294X.2006.03148.x INVITEDBlackwell Publishing Ltd REVIEW Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management SUZANNE EDMANDS Department of Biological Sciences, AHF 107, University of Southern California, Los Angeles, CA 90089-0371, USA Abstract As populations become increasingly fragmented, managers are often faced with the dilemma that intentional hybridization might save a population from inbreeding depression but it might also induce outbreeding depression. While empirical evidence for inbreeding depression is vastly greater than that for outbreeding depression, the available data suggest that risks of outbreeding, particularly in the second generation, are on par with the risks of inbreeding. Predicting the relative risks in any particular situation is complicated by vari- ation among taxa, characters being measured, level of divergence between hybridizing populations, mating history, environmental conditions and the potential for inbreeding and outbreeding effects to be occurring simultaneously. Further work on consequences of interpopulation hybridization is sorely needed with particular emphasis on the taxonomic scope, the duration of fitness problems and the joint effects of inbreeding and outbreeding. Meanwhile, managers can minimize the risks of both inbreeding and outbreeding by using intentional hybridization only for populations clearly suffering from inbreeding depression, maximizing the genetic and adaptive similarity between populations, and testing the effects of hybridization for at least two generations whenever possible. Keywords: fitness, hybridization, inbreeding depression, outbreeding depression Received 21 May 2006; revision accepted 1 September 2006 times more fit than the resident lineages (Ebert et al.
    [Show full text]