Australian Native Plants Society Australia Hakea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of Plants Used by Carnaby's Black Cockatoo
Plants Used by Carnaby's Black Cockatoo List prepared by Christine Groom, Department of Environment and Conservation 15 April 2011 For more information on plant selection or references used to produce this list please visit the Plants for Carnaby's Search Tool webpage at www.dec.wa.gov.au/plantsforcarnabys Used for Soil type Soil drainage Priority for planting Sun Species Growth form Flower colour Origin for exposure Carnaby's Feeding Nesting Roosting Clayey Gravelly Loamy Sandy drained Well drained Poorly Waterlogged affected Salt Acacia baileyana (Cootamundra wattle)* Low Tree Yellow Australian native Acacia pentadenia (Karri Wattle) Low Tree Cream WA native Acacia saligna (Orange Wattle) Low Tree Yellow WA native Agonis flexuosa (Peppermint Tree) Low Tree White WA native Araucaria heterophylla (Norfolk Island Pine) Low Tree Green Exotic to Australia Banksia ashbyi (Ashby's Banksia) Medium Tree or Tall shrub Yellow, Orange WA native Banksia attenuata (Slender Banksia) High Tree Yellow WA native Banksia baxteri (Baxter's Banksia) Medium Tall shrub Yellow WA native Banksia carlinoides (Pink Dryandra) Medium Medium or small shrub White, cream, pink WA native Banksia coccinea (Scarlet Banksia) Medium Tree Red WA native Banksia dallanneyi (Couch Honeypot Dryandra) Low Medium or small shrub Orange, brown WA native Banksia ericifolia (Heath-leaved Banksia) Medium Tall shrub Orange Australian native Banksia fraseri (Dryandra) Medium Medium or small shrub Orange WA native Banksia gardneri (Prostrate Banksia) Low Medium -
Investigating Mechanisms Maintaining Plant Species Diversityin Fire Prone
Investigating mechanisms maintaining plant species diversity in fire prone Mediterranean-type vegetation using spatially-explicit simulation models PhD Thesis Alexandra Esther Department of Plant Ecology and Nature Conservation University of Potsdam 2010 Investigating mechanisms maintaining plant species diversity in fire prone Mediterranean-type vegetation using spatially-explicit simulation models DISSERTATION zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.) in der Wissenschaftsdisziplin "Naturschutz und Ökologie" eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Alexandra Esther Potsdam, Januar 2010 This work is licensed under a Creative Commons License: Attribution - Noncommercial - No Derivative Works 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-nd/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2010/4463/ URN urn:nbn:de:kobv:517-opus-44632 http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-44632 TABLE OF CONTENTS 1 ZUSAMMENFASSUNG................................................................................................ 4 2 SUMMARY .................................................................................................................... 6 3 GENERAL INTRODUCTION....................................................................................... 8 3.1 MOTIVATION...................................................................................................... -
10 Seed Release and Dispersal Mechanisms
10 Seed Release and Dispersal Mechanisms For seedling recruitment to occur seeds need to be dispersed into an environment that promotes germination and seedling survival. Dispersal consists of two phases. Primary dispersal is defined as the initial transport of seeds or seed-bearing fruits (collectively seeds and fruits are called diaspores) to the ground or water body, or for aerial parasites, a host branch. Secondary dispersal relates to any subsequent movement to the seed’s final resting place. Primary dispersal may be active (e.g. seeds released explosively from the fruit, e.g. dehiscence (opening) of Hardenbergia pods), passive (e.g. seeds fall out when the capsules of Eucalyptus open), or require a vector to aid in seed removal (e.g. wind uplift of winged seeds of Hakea or winged fruits of Nuytsia; Amyema berries consumed by mistletoe birds). Secondary dispersal involves either a biotic (e.g. ants) or environmental (e.g. wind, water) vector, and it is usually a different mechanism than that involved in primary dispersal. While primary dispersal is usually only for a few metres, secondary dispersal may cover several kilometres, and sometimes thousands for tiny seeds. This chapter covers some of the dispersal mechanisms exhibited by the SouthWest flora following their release. Terminology used to describe seed dispersal mechanisms is provided in Table 10.1. Table 10.1: Seed dispersal terminology. Term Definition Anemochory Wind dispersed Chamaechory Dispersal by rolling along the ground (wind assisted) Zoochory Animal dispersed (general) Myrmecochory Ant dispersed Ornithochory Bird dispersed Mammalochory Mammal dispersed Hydrochory Water dispersed Barochory Unassisted (gravity causes seeds to drop to the ground) Autochory Dispersal assisted by the actions of the parent plant (e.g. -
Bindaring Park Bassendean - Fauna Assessment
Bindaring Park Bassendean - Fauna Assessment Wetland habitat within Bindaring Park study area (Rob Browne-Cooper) Prepared for: Coterra Environment Level 3, 25 Prowse Street, WEST PERTH, WA 6005 Prepared by: Robert Browne-Cooper and Mike Bamford M.J. & A.R. Bamford Consulting Ecologists 23 Plover Way KINGSLEY WA 6026 6th April 2017 Bindaring Park - Fauna Assessment Summary Bamford Consulting Ecologists was commissioned by Coterra Environment to conduct a Level 1 fauna assessment (desktop review and site inspection) of Bindaring Park in Bassendean (the study area). The fauna survey is required to provide information on the ecological values for the Town of Bassendean’s Stage 2 Bindaring Wetland Concept Plan Development. This plan include developing design options (within wetland area) to enhance ecological values and habitat. The purpose of this report is to provide information on the fauna values of the habitat, particularly for significant species, and an overview of the ecological function of the site within the local and regional context. This assessment focuses on vertebrate fauna associated with the wetland and surrounding parkland vegetation within the study area, with consideration for connectivity with the Swan River. An emphasis is placed on locally-occurring conservation significant species and their habitat. Relevant species include Carnaby’s Black-Cockatoo, Forest Red-tailed Black-Cockatoo, and other local native species such as the Water Rat or Rakali. The fauna investigations were based on a desktop assessment and a field survey conducted in February 2017. The desktop study identified 180 vertebrate fauna species as potentially occurring in the Bindaring Park study area (see Table 3 and Appendix 5): five fish, 6 frogs, 20 reptiles, 134 birds, 8 native and 7 introduced mammals. -
Flora and Vegetation Of
__________________________________________________________________________________________ FLORA AND VEGETATION OF AVIVA LEASE AREA Prepared for: URS Australia Pty Ltd on behalf of Aviva Corporation Ltd Prepared by: Mattiske Consulting Pty Ltd February 2009 MATTISKE CONSULTING PTY LTD URS0808/195/08 MATTISKE CONSULTING PTY LTD __________________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY ................................................................................................................................................ 1 2. INTRODUCTION ...................................................................................................................................... 3 2.1 Location .............................................................................................................................................. 3 2.2 Climate ................................................................................................................................................ 3 2.3 Landforms and Soils ........................................................................................................................... 4 2.4 Vegetation ........................................................................................................................................... 4 2.5 Declared Rare, Priority and Threatened Species ................................................................................. 4 2.6 Threatened Ecological Communities (TEC’s) ................................................................................... -
For Perspectives in Plant Ecology, Evolution and Systematics Manuscript Draft
Elsevier Editorial System(tm) for Perspectives in Plant Ecology, Evolution and Systematics Manuscript Draft Manuscript Number: PPEES-D-15-00109R1 Title: Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defense in Hakea Article Type: Research paper Section/Category: Keywords: Black cockatoo; Crypsis; Fruit and seed size; Granivory; Resprouter; Spinescence Corresponding Author: Prof. Byron Lamont, Corresponding Author's Institution: Curtin University First Author: Byron Lamont Order of Authors: Byron Lamont; Byron Lamont; Mick Hanley; Philip Groom Abstract: Nutrient-impoverished soils with severe summer drought and frequent fire typify many Mediterranean-type regions of the world. Such conditions limit seed production and restrict opportunities for seedling recruitment making protection from granivores paramount. Our focus was on Hakea, a genus of shrubs widespread in southwestern Australia, whose nutritious seeds are targeted by strong-billed cockatoos. We assessed 56 Hakea species for cockatoo damage in 150 populations spread over 900 km in relation to traits expected to deter avian granivory: dense spiny foliage; large, woody fruits; fruit crypsis via leaf mimicry and shielding; low seed stores; and fruit clustering. We tested hypothesises centred on optimal seed defenses in relation to to a) pollination syndrome (bird vs insect), b) fire regeneration strategy (killed vs resprouting) and c) on-plant seed storage (transient vs prolonged). Twenty species in 50 populations showed substantial seed loss from cockatoo granivory. No subregional trends in granivore damage or protective traits were detected, though species in drier, hotter areas were spinier. Species lacking spiny foliage around the fruits (usually bird-pollinated) had much larger (4−5 times) fruits than those with spiny leaves and cryptic fruits (insect-pollinated). -
Parks and Recreation Reserve Management Plan 2019
Alkimos City Centre and Central (EPBC 2015/7561) Parks and Recreation Reserve Management Plan Prepared for Lendlease by Strategen November 2019 Alkimos City Centre and Central (EPBC 2015/7561) Parks and Recreation Reserve Management Plan Strategen is a trading name of Strategen Environmental Consultants Pty Ltd Level 1, 50 Subiaco Square Road Subiaco WA 6008 ACN: 056 190 419 November 2019 Limitations Scope of services This report (“the report”) has been prepared by Strategen Environmental Consultants Pty Ltd (Strategen) in accordance with the scope of services set out in the contract, or as otherwise agreed, between the Client and Strategen. In some circumstances, a range of factors such as time, budget, access and/or site disturbance constraints may have limited the scope of services. This report is strictly limited to the matters stated in it and is not to be read as extending, by implication, to any other matter in connection with the matters addressed in it. Reliance on data In preparing the report, Strategen has relied upon data and other information provided by the Client and other individuals and organisations, most of which are referred to in the report (“the data”). Except as otherwise expressly stated in the report, Strategen has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report (“conclusions”) are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. Strategen has also not attempted to determine whether any material matter has been omitted from the data. -
Plant Tracker 97
Proprietor: Ashley Elliott 230 Tannery Lane Mandurang Victoria 3551 Telephone: (03) 5439 5384 PlantPlant CatalogueCatalogue Facsimile: (03) 5439 3618 E-mail: [email protected] Central & Northern Victoria's Indigenous Nursery Please contact the nursery to confirm stock availablity Non-Local Plants aneura Mulga or Yarran Acacia ramulosa Horse Mulga or Narrow Leaf Mulga Acacia aphylla Acacia redolens Acacia argrophylla Silver Mulga Acacia restiacea Acacia beckleri Barrier Range Wattle Acacia rhigiophylla Dagger-leaved Acacia Acacia cardiophylla Wyalong Wattle Acacia riceana Acacia chinchillensis Acacia rossei Acacia cliftoniana ssp congesta Acacia spectabilis Mudgee Wattle Acacia cognata River Wattle - low form Acacia spinescens Spiny Wattle Acacia cognata River or Bower Wattle Acacia spongilitica Acacia conferta Crowded-leaf Wattle Acacia squamata Bright Sedge Wattle Acacia convenyii Blue Bush Acacia stigmatophylla Acacia cultriformis Knife-leaf Wattle Acacia subcaerulea Acacia cupularis Coastal prostrate Acacia vestita Hairy Wattle Acacia cyclops Round-seeded Acacia Acacia victoriae Bramble Wattle or Elegant Wattle Acacia declinata Acacia wilhelmiana Dwarf Nealie Acacia decora Western Silver Wattle Acacia willdenowiana Leafless Wattle Acacia denticulosa Sandpaper Wattle Acacia caerulescens caerulescens Buchan Blue Acacia drummondii subsp Dwarf Drummond Wattle Acanthocladium dockeri Laura Daisy drummondii Actinodium cunninghamii Albany Daisy or Swamp Daisy Acacia elata Cedar Wattle Actinodium species (prostrate form) Acacia -
Gardens and Stewardship
GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point. -
Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia)
Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia) Alison Kellow Michael Bayly Pauline Ladiges School of Botany, The University of Melbourne July, 2007 THE GRIMWADE PLANT COLLECTION, MT BUFFALO Contents Summary ...........................................................................................................................3 Mt Buffalo and its flora.....................................................................................................4 History of botanical exploration........................................................................................5 The Grimwade plant collection of Percival St John..........................................................8 A new collection of plants from Mt Buffalo - The Miegunyah Plant Collection (2006/2007) ....................................................................................................................................13 Plant species list for Mt Buffalo National Park...............................................................18 Conclusion.......................................................................................................................19 Acknowledgments...........................................................................................................19 References .......................................................................................................................20 Appendix 1 Details of specimens in the Grimwade Plant Collection.............................22 -
Pollination and Plant Defence Traits Covary in Western Australian Hakeas
Research PollinationBlackwell Publishing Ltd and plant defence traits co-vary in Western Australian Hakeas Mick E. Hanley1,2, Byron B. Lamont2 and W. Scott Armbruster3 1School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; 2Centre for Ecosystem Diversity and Dynamics, Department of Environmental Biology, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia; 3School of Biological Science, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK Summary Author for correspondence: • Despite the conflicting demands imposed by mutualistic (pollination) and antag- Mick Hanley onistic (florivory) processes, the relative importance of the key selective pressures + Tel: 44 01752 238319 influencing floral evolution are not readily apparent. In this study we quantified Fax: +44 01752 232970 Hakea Email: [email protected] a range of floral and foliar traits within the genus to investigate how pollinator and herbivore selection might influence the evolution of floral attraction and Received: 25 September 2008 defence attributes. Accepted: 30 October 2008 • Plant material was collected from populations of 51 Australian Hakea species native to southwestern Australia, and measurements were taken of foliage and New Phytologist (2009) 182: 251–260 inflorescence morphology, inflorescence colour and floral chemical defence. Hakeas © The Authors (2008). Journal compilation © New Phytologist (2008) doi: 10.1111/j.1469-8137.2008.02709.x were separated into bird- vs insect-pollinated species on the basis of stigma–nectary distance. Key words: chemical defence, • Our results show how the evolution of insect vs bird pollination is closely linked cyanogenesis, florivory, Hakea, pollination to whether inflorescences are protected by physical (leaf spines, dense foliage) syndrome, Proteaceae, spinescence, or chemical (floral cyanide) defences, respectively. -
Australian Native Plants Society Australia Hakea
AUSTRALIAN NATIVE PLANTS SOCIETY AUSTRALIA HAKEA STUDY GROUP NEWSLETTER No. 61 JUNE 2016 ISSN0727-7008 Leader: Paul Kennedy 210 Aireys St. Elliminyt 3250 E mail [email protected] Tel. 03-52315569 Dear members. How quickly the year is passing. The long dry summer has finally given way to milder autumn days and wet weather. In the first two weeks of May we have received 80mm of rain, which is more than all the rain we have had in the previous four months. I watered the smaller Hakeas sparingly over the dry period and now that the rains have come they should be able to survive on their own. Our garden. It has been rather hectic around here. The builders finally arrived to build a patio and pergola in the front of the house. At the same time construction of a proper driveway and brick paved paths to various parts of the garden commenced. I have already moved approximately 100 barrow loads of sandy loam soil to other parts of the garden to form more raised beds and there are still a lot more to move yet. I am confident the final landscape will look good. Keeping builders away from standing on plants is always difficult. Even roping off areas where special plants exist does not ensure that they will not find a reason to erect a ladder in that spot. Our Hakea collection now stands at 145 species in the ground. Travels. Just before Easter Barbara and I set off for a trip through the eastern Victorian Alps and along the border to Bonang, then crossing into NSW to Bombala, Jindabyne, Canberra and Milton.