Microsoft Academic Graph: When Experts Are Not Enough
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Citation Analysis for the Modern Instructor: an Integrated Review of Emerging Research
CITATION ANALYSIS FOR THE MODERN INSTRUCTOR: AN INTEGRATED REVIEW OF EMERGING RESEARCH Chris Piotrowski University of West Florida USA Abstract While online instructors may be versed in conducting e-Research (Hung, 2012; Thelwall, 2009), today’s faculty are probably less familiarized with the rapidly advancing fields of bibliometrics and informetrics. One key feature of research in these areas is Citation Analysis, a rather intricate operational feature available in modern indexes such as Web of Science, Scopus, Google Scholar, and PsycINFO. This paper reviews the recent extant research on bibliometrics within the context of citation analysis. Particular focus is on empirical studies, review essays, and critical commentaries on citation-based metrics across interdisciplinary academic areas. Research that relates to the interface between citation analysis and applications in higher education is discussed. Some of the attributes and limitations of citation operations of contemporary databases that offer citation searching or cited reference data are presented. This review concludes that: a) citation-based results can vary largely and contingent on academic discipline or specialty area, b) databases, that offer citation options, rely on idiosyncratic methods, coverage, and transparency of functions, c) despite initial concerns, research from open access journals is being cited in traditional periodicals, and d) the field of bibliometrics is rather perplex with regard to functionality and research is advancing at an exponential pace. Based on these findings, online instructors would be well served to stay abreast of developments in the field. Keywords: Bibliometrics, informetrics, citation analysis, information technology, Open resource and electronic journals INTRODUCTION In an ever increasing manner, the educational field is irreparably linked to advances in information technology (Plomp, 2013). -
Tipping Points: Cancelling Journals When Arxiv Access Is Good Enough
Tipping points: cancelling journals when arXiv access is good enough Tony Aponte Sciences Collection Coordinator UCLA Library ASEE ELD Lightning Talk June 17, 2019 Preprint explosion! Brian Resnick and Julia Belluz. (2019). The war to free science. Vox https://www.vox.com/the-highlight/2019/6/3/18271538/open- access-elsevier-california-sci-hub-academic-paywalls Preprint explosion! arXiv. (2019). arXiv submission rate statistics https://arxiv.org/help/stats/2018_by_area/index 2018 Case Study: two physics journals and arXiv ● UCLA: heavy users of arXiv. Not so heavy users of version of record ● Decent UC authorship ● No UC editorial board members 2017 Usage Annual cost Cost per use 2017 Impact Factor Journal A 103 $8,315 ~$80 1.291 Journal B 72 $6,344 ~$88 0.769 Just how many of these articles are OA? OAISSN.py - Enter a Journal ISSN and a year and this python program will tell you how many DOIs from that year have an open access version2 Ryan Regier. (2018). OAISSN.py https://github.com/ryregier/OAcounts. Just how many of these articles are OA? Ryan Regier. (2018). OAISSN.py https://github.com/ryregier/OAcounts. Just how many of these articles are OA? % OA articles from 2017 % OA articles from 2018 Journal A 68% 64% Journal B 11% 8% Ryan Regier. (2018). OAISSN.py https://github.com/ryregier/OAcounts. arXiv e-prints becoming closer to publisher versions of record according to UCLA similarity study of arXiv articles vs versions of record Martin Klein, Peter Broadwell, Sharon E. Farb, Todd Grappone. 2018. Comparing Published Scientific Journal Articles to Their Pre-Print Versions -- Extended Version. -
Microsoft Academic Search and Google Scholar Citations
Microsoft Academic Search and Google Scholar Citations Microsoft Academic Search and Google Scholar Citations: A comparative analysis of author profiles José Luis Ortega1 VICYT-CSIC, Serrano, 113 28006 Madrid, Spain, [email protected] Isidro F. Aguillo Cybermetrics Lab, CCHS-CSIC, Albasanz, 26-28 28037 Madrid, Spain, [email protected] Abstract This paper aims to make a comparative analysis between the personal profiling capabilities of the two most important free citation-based academic search engines, namely Microsoft Academic Search (MAS) and Google Scholar Citations (GSC). Author profiles can be very useful for evaluation purposes once the advantages and the shortcomings of these services are described and taken into consideration. A total of 771 personal profiles appearing in both the MAS and the GSC databases are analysed. Results show that the GSC profiles include more documents and citations than those in MAS, but with a strong bias towards the Information and Computing sciences, while the MAS profiles are disciplinarily better balanced. MAS shows technical problems such as a higher number of duplicated profiles and a lower updating rate than GSC. It is concluded that both services could be used for evaluation proposes only if they are applied along with other citation indexes as a way to supplement that information. Keywords: Microsoft Academic Search; Google Scholar Citations; Web bibliometrics; Academic profiles; Research evaluation; Search engines Introduction In November 2009, Microsoft Research Asia started a new web search service specialized in scientific information. Even though Google (Google Scholar) already introduced an academic search engine in 2004, the proposal of Microsoft Academic Search (MAS) went beyond a mere document retrieval service that counts citations. -
LIBRARY DATABASES AZ Academic Search Complete
ALL LIBRARY DATABASES A-Z Academic Search Complete (one of the world’s largest databases of academic journals and magazines on all subjects) Agricola (citations to articles, but NOT full-text articles, from agriculture-related documents) Alt HealthWatch (journals and pamphlets focusing on holistic and integrated approaches to health care) Applied Science & Technology Full Text (nearly 800 journals dealing with a wide variety of applied science specialties, such as engineering and information science) Art Full Text (hundreds of journals, many of them including complete articles, covering art history, interior design, photography, and film) Biography in Context (information about notable people, both contemporary and historical, from a wide range of sources, such as biographical dictionaries, magazines, newspapers, and academic journals) Biography Index Past and Present (information about notable people primarily from magazine articles; generally provides only citations, but occasionally includes full-text articles) Biography Reference Bank (information about notable people from periodical articles and biographical dictionaries) Biological & Agricultural Index Plus (almost 400 journals, over 100 of them including full-text articles, covering all aspects of biology and agriculture) BioOne Complete (full-text articles from over 200 biology journals) Bloom’s Literature (information on literature primarily from high school textbooks and academic books) Book Review Digest Plus (full-text reviews as well as citations to book reviews appearing -
Scholarly Metrics Recommendations for Research Libraries: Deciphering the Trees in the Forest Table of Contents
EUROPE’S RESEARCH LIBRARY NETWORK Scholarly Metrics Recommendations for Research Libraries: Deciphering the Trees in the Forest Table of Contents 01 3D. Learn About Platforms Before Implementing Them In Services & 15 INTRODUCTION 03 Homogenize Different Sources ABOUT LIBER 3E. Work With Researchers To Build Awareness Of Benefits But Educate 16 1. DISCOVERY & DISCOVERABILITY 05 About Weaknesses of Scholarly Metrics 1A. Provide Contextual Information To Allow the Discovery of Related 05 3F. Expand Your Perspective When Developing Services; Avoid Single- 17 Work & Users Purpose Approaches 1B. Exploit Rich Network Structures & Implement Bibliometric Methods To 07 3G. Teach Colleagues New Skills & Library Goals & Services 17 Enable Discovery 1C. Encourage Sharing Of Library Collections Under Open Licenses 08 4. RESEARCH ASSESSMENT 19 4A. Establish Appropriate Goals for Assessment Exercises Before Selecting 19 2. SHOWCASING ACHIEVEMENTS 09 Databases & Metrics; Be Transparent About Use & Interpretation 2A. Incentivize Researchers To Share Scholarly Works, Promote Achievements 09 4B. Use Different Data Sources to Include Various Scholarly Works & 20 Online & Engage With Audiences Disciplinary Communication & Publication Cultures 2B. Encourage Researchers To Showcase Scientific Contributions & Monitor 11 4C. Rely on Objective, Independent & Commonly-Accepted Data Sources 21 Impact To Provide Sound & Transparent Scholarly Metrics 4D. Avoid Using Composite Indicators & Conflating Different Aspects 21 3. SERVICE DEVELOPMENT 13 Of Scholarly Works & Impact; Don’t Lose The Multifaceted Nature of 3A. Join Forces With Stakeholders To Provide Services Reusing Existing 13 Metrics & Distort Interpretation Resources, Tools, Methods & Data 3B. Value Various Levels of Engagement; Favour Standardized, Well-Established 15 23 CONCLUSION & CALL FOR ACTION Practices & Easy-To-Use Tools 25 REFERENCES 3C. -
Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and Opencitations’ COCI: a Multidisciplinary Comparison of Coverage Via Citations
✅ The content of this manuscript has been peer-reviewed and accepted for publication at Scientometrics (ISSN 1588-2861) Cite as: Martín-Martín, A., Thelwall, M., Orduna-Malea, E., & Delgado López-Cózar, E. (2021). Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics, 126(1), 871-906. https://doi.org/10.1007/s11192-020-03690-4 Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations Alberto Martín-Martín 1 , Mike Thelwall 2 , Enrique Orduna- 3 1 Malea , Emilio Delgado López-Cózar Abstract (also in Spanish, Chinese) Introduction New sources of citation data have recently become available, such as Microsoft Academic, Dimensions, and the OpenCitations Index of CrossRef open DOI-to-DOI citations (COCI). Although these have been compared to the Web of Science (WoS), Scopus, or Google Scholar, there is no systematic evidence of their differences across subject categories. Methods In response, this paper investigates 3,073,351 citations found by these six data sources to 2,515 English-language highly-cited documents published in 2006 from 252 subject categories, expanding and updating the largest previous study. Results Google Scholar found 88% of all citations, many of which were not found by the other sources, and nearly all citations found by the remaining sources (89%-94%). A similar pattern held within most subject categories. Microsoft Academic is the second largest overall (60% of all citations), including 82% of Scopus citations and 86% of Web of Science citations. In most categories, Microsoft Academic found more citations than Scopus and WoS (182 and 223 subject categories, respectively), but had coverage gaps in some areas, such as Physics and some Humanities categories. -
Where to Search for Academic Articles
Where To Search For Academic Articles InchoatelyMoribund Winston autotelic, always Winny retime requites his inactivationsynchronizations and shriek if Fairfax Tessa. is Mississippian or flaking instrumentally. Sonny chlorinated moltenly. Add advertisement to articles where you Before Elbakyan was a pirate, she was an aspiring scientist with a knack for philosophizing and computer programming. Search for Articles with Google Scholar University Libraries. It was also easy to perform duplicate spam. Their articles for academics. If so, she pulled it from its archive. The new ideas is for search to articles where available. Clicking the academic content for search to academic articles where available in research information on the quality. The official publication as biblical studies, which snell library can search, and he hopes to. Browse NC LIVE Resources NC LIVE. Academic libraries play an important role in the creation, preservation, and dissemination of information. Provides fulltext coverage and magazine tough and scholarly journal articles for most academic disciplines. New to articles for searching to find. Users access journals are researching companies and universities, and indexing pdfs and chinese publicity bureau, where to search for academic articles based purely on education, new drug supplements. A peer reviewed journal article would usually a 4000-000 word article published in an academic journal Journal articles are considered the best sources for essays. Sub plot factors were. Journals for articles where to get a specific article digital publishing company and unlike other publishers. How they find Articles UC Berkeley Library. If there are for academic search articles where to for. When was Findlay Established? Stem research inquiring into any publisher elsevier and conditions, academic articles are. -
Citeseerx: 20 Years of Service to Scholarly Big Data
CiteSeerX: 20 Years of Service to Scholarly Big Data Jian Wu Kunho Kim C. Lee Giles Old Dominion University Pennsylvania State University Pennsylvania State University Norfolk, VA University Park, PA University Park, PA [email protected] [email protected] [email protected] ABSTRACT access to a growing number of researchers. Mass digitization par- We overview CiteSeerX, the pioneer digital library search engine, tially solved the problem by storing document collections in digital that has been serving academic communities for more than 20 years repositories. The advent of modern information retrieval methods (first released in 1998), from three perspectives. The system per- significantly expedited the process of relevant search. However, spective summarizes its architecture evolution in three phases over documents are still saved individually by many users. In 1997, three the past 20 years. The data perspective describes how CiteSeerX computer scientists at the NEC Research Institute (now NEC Labs), has created searchable scholarly big datasets and made them freely New Jersey, United States – Steven Lawrence, Kurt Bollacker, and available for multiple purposes. In order to be scalable and effective, C. Lee Giles, conceived an idea to create a network of computer AI technologies are employed in all essential modules. To effectively science research papers through citations, which was to be imple- train these models, a sufficient amount of data has been labeled, mented by a search engine, the prototype CiteSeer. Their intuitive which can then be reused for training future models. Finally, we idea, automated citation indexing [8], changed the way researchers discuss the future of CiteSeerX. -
Overview of the Altmetrics Landscape
Purdue University Purdue e-Pubs Charleston Library Conference Overview of the Altmetrics Landscape Richard Cave Public Library of Science, [email protected] Follow this and additional works at: https://docs.lib.purdue.edu/charleston Part of the Library and Information Science Commons An indexed, print copy of the Proceedings is also available for purchase at: http://www.thepress.purdue.edu/series/charleston. You may also be interested in the new series, Charleston Insights in Library, Archival, and Information Sciences. Find out more at: http://www.thepress.purdue.edu/series/charleston-insights-library-archival- and-information-sciences. Richard Cave, "Overview of the Altmetrics Landscape" (2012). Proceedings of the Charleston Library Conference. http://dx.doi.org/10.5703/1288284315124 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Overview of the Altmetrics Landscape Richard Cave, Director of IT and Computer Operations, Public Library of Science Abstract While the impact of article citations has been examined for decades, the “altmetrics” movement has exploded in the past year. Altmetrics tracks the activity on the Social Web and looks at research outputs besides research articles. Publishers of scientific research have enabled altmetrics on their articles, open source applications are available for platforms to display altmetrics on scientific research, and subscription models have been created that provide altmetrics. In the future, altmetrics will be used to help identify the broader impact of research and to quickly identify high-impact research. Altmetrics and Article-Level Metrics Washington as an academic research project to rank journals based on a vast network of citations The term “altmetrics” was coined by Jason Priem, (Eigenfactor.org, http://www.eigenfactor.org/ a PhD candidate at the School of Information and whyeigenfactor.php). -
Arxiv:2010.04147V1 [Cs.LG] 8 Oct 2020
Automatic generation of reviews of scientific papers Anna Nikiforovskaya∗y, Nikolai Kapralovz, Anna Vlasovax, Oleg Shpynov{k and Aleksei Shpilman∗{ ∗National Research University Higher School of Economics, Saint Petersburg, Russia yIDMC, Universite´ de Lorraine, Nancy, France zSechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia xSaint Petersburg State University, Saint Petersburg, Russia {JetBrains Research, Saint Petersburg, Russia kCorresponding author, Email: [email protected] Abstract—With an ever-increasing number of scientific papers area. However, it was shown that the author and the place of published each year, it becomes more difficult for researchers publication of the paper affect the number of citations [3]. to explore a field that they are not closely familiar with Also, the meaning of citation is actively studied. For exam- already. This greatly inhibits the potential for cross-disciplinary ple, it has been shown that there are 15 different meanings research. A traditional introduction into an area may come in of the citation [4]. the form of a review paper. However, not all areas and sub- Another aspect of the paper analysis is the summariza- areas have a current review. In this paper, we present a method tion of the scientific papers [5]. Studies in this area show that for the automatic generation of a review paper corresponding the citation context, i.e., the text surrounding the link to the to a user-defined query. This method consists of two main paper, can be used for its summarization [6]. Moreover, it parts. The first part identifies key papers in the area by their was demonstrated that citation context reflects the meaning bibliometric parameters, such as a graph of co-citations. -
H-Index Manipulation by Merging Articles
Artificial Intelligence 240 (2016) 19–35 Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint H-index manipulation by merging articles: Models, theory, ✩ and experiments ∗ René van Bevern a,b,d, , Christian Komusiewicz c,d, Rolf Niedermeier d, Manuel Sorge d, Toby Walsh d,e,f a Novosibirsk State University, Novosibirsk, Russian Federation b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation c Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany d Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany e University of New South Wales, Sydney, Australia f Data61, Sydney, Australia a r t i c l e i n f o a b s t r a c t Article history: An author’s profile on Google Scholar consists of indexed articles and associated data, Received 9 March 2016 such as the number of citations and the H-index. The author is allowed to merge Received in revised form 26 July 2016 articles; this may affect the H-index. We analyze the (parameterized) computational Accepted 5 August 2016 complexity of maximizing the H-index using article merges. Herein, to model realistic Available online 10 August 2016 manipulation scenarios, we define a compatibility graph whose edges correspond to Keywords: plausible merges. Moreover, we consider several different measures for computing the Citation index citation count of a merged article. For the measure used by Google Scholar, we give Hirsch index an algorithm that maximizes the H-index in linear time if the compatibility graph has Parameterized complexity constant-size connected components. -
Exploiting Citation Networks for Large-Scale Author Name Disambiguation Christian Schulz1,Aminmazloumian1, Alexander M Petersen2, Orion Penner2 and Dirk Helbing1*
Schulz et al. EPJ Data Science 2014, 2014:11 http://www.epjdatascience.com/content/2014/1/11 REGULAR ARTICLE OpenAccess Exploiting citation networks for large-scale author name disambiguation Christian Schulz1,AminMazloumian1, Alexander M Petersen2, Orion Penner2 and Dirk Helbing1* *Correspondence: [email protected] Abstract 1Department of Humanities and Social Sciences, Chair of Sociology, We present a novel algorithm and validation method for disambiguating author in particular of Modeling and names in very large bibliographic data sets and apply it to the full Web of Science Simulation, ETH Zurich, (WoS) citation index. Our algorithm relies only upon the author and citation graphs Clausiusstrasse 50, CH-8092 Zurich, Switzerland available for the whole period covered by the WoS. A pair-wise publication similarity Full list of author information is metric, which is based on common co-authors, self-citations, shared references and available at the end of the article citations, is established to perform a two-step agglomerative clustering that first connects individual papers and then merges similar clusters. This parameterized model is optimized using an h-index based recall measure, favoring the correct assignment of well-cited publications, and a name-initials-based precision using WoS metadata and cross-referenced Google Scholar profiles. Despite the use of limited metadata, we reach a recall of 87% and a precision of 88% with a preference for researchers with high h-index values. 47 million articles of WoS can be disambiguated on a single machine in less than a day. We develop an h-index distribution model, confirming that the prediction is in excellent agreement with the empirical data, and yielding insight into the utility of the h-index in real academic ranking scenarios.