X-Ray Diffraction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detailed New Tabulation of Atomic Form Factors and Attenuation Coefficients
AU0019046 DETAILED NEW TABULATION OF ATOMIC FORM FACTORS AND ATTENUATION COEFFICIENTS IN THE NEAR-EDGE SOFT X-RAY REGIME (Z = 30-36, Z = 60-89, E = 0.1 keV - 8 keV), ADDRESSING CONVERGENCE ISSUES OF EARLIER WORK C. T. Chantler. School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia ABSTRACT Reliable knowledge of the complex X-ray form factor (Re(f) and f') and the photoelectric attenuation coefficient aPE is required for crystallography, medical diagnosis, radiation safety and XAFS studies. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 keV to 3 keV X-ray energies. The key discrepancies are due to the smoothing of edge structure, the use of non-relativistic wavefunctions, and the lack of appropriate convergence of wavefunctions. This paper addresses these key discrepancies and derives new theoretical results of substantially higher accuracy in near-edge soft X-ray regions. The high-energy limitations of the current approach are also illustrated. The associated figures and tabulation demonstrate the current comparison with alternate theory and with available experimental data. In general experimental data is not sufficiently accurate to establish the errors and inadequacies of theory at this level. However, the best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisions with theory in the near future. Key Words: anomalous dispersion; attenuation; E = 0.1 keV to 8 keV; form factors; photoabsorption tabulation; Z = 30 - 89. 31-05 Contents 1. -
Introduction to High-Resolution Inelastic X-Ray Scattering
Revised, 2020 (29b), http://arxiv.org/abs/1504.01098 See also Synchrotron Light Sources & Free Electron Lasers, edited by E. Jaeschke, et al. Springer International Publishing, Cham, 2016, p. 1643-1757 https://doi.org/10.1007/978-3-319-14394-1_52 http://dx.doi.org/10.1007/978-3-319-14394-1_41 Introduction to High-Resolution Inelastic X-Ray Scattering Alfred Q.R. Baron Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148 Japan [email protected] Abstract This paper reviews non-resonant, meV-resolution inelastic x-ray scattering (IXS), as applied to the measurement of atomic dynamics of crystalline materials. It is designed to be an introductory, though in-depth, look at the field for those who be may interested in performing IXS experiments, or in understanding the operation of IXS spectrometers, or those desiring a practical introduction to harmonic phonons in crystals at finite momentum transfers. The treatment of most topics begins from ground-level, with a strong emphasis on practical issues, as they have occurred to the author in two decades spent introducing meV-resolved IXS in Japan, including designing and building two IXS beamlines, spectrometers and associated instrumentation, performing experiments, and helping and teaching other scientists. After an introduction that compares IXS to other methods of investigating atomic dynamics, some of the basic principles of scattering theory are described with the aim of introducing useful and relevant concepts for the experimentalist. That section includes a fairly detailed discussion of harmonic phonons. The theory section is followed by a brief discussion of calculations and then a longer section on spectrometer design, concepts, and implementation, including a brief introduction to dynamical diffraction and a survey of presently available instruments. -
Surface X-Ray Diffraction
Rep. Prog. Phys. SS (1992) 599-651. Printed in the UK Surface x-ray diffraction I K Robinsontg and D J Weeall t AT&T Bell laboratories, Murray Hill, NJ 07974, USA $ Department of Physics, University of Washington, Seattle, WA 98195, USA Abstract A general introduction to x-ray diffraction and its application to the study of surfaces and interfaces is presented. The application of x-ray diffractkm to various problems in surface and interface science is illustrated through five different techniques: crystal truncation rod analysis, two-dimensional crystallography, three-dimensional structure analysis, the evanescent wave method and lineshape analysis. These techniques are explained with numerous examples from recent experiments and with the aid of an extensive bibliography. This review was received in October 1991. 0 Address from August 1992 Department of Physics, University of Illinois, Urbana, IL 61801,USA. 11 Present address: NEC Fundamental Research Iaboratories, 34 Mikigaoka, Pukuba, Ibaraki 305, Japan. 600 I K Robinson and D J Tweet Contents Page 1. Introduction 601 2. X-ray diffraction background 601 2.1. Momentum transfer 602 2.2. "I and structure factors 603 2.3. 3D diffraction 604 3. Surface difEraction 6% 3.1. Crystal truncation rods 608 3.2. Surface roughness and ms 6m 4. Crystal truncation rod analysis 610 4.1. NiSi,/Si( 111) interface 610 4.2. Other CT'R-derived structures 611 5. 2D crystallography 613 5.1. InSb(ll1) 2x2 surface 615 5.2. Patterson function 616 5.3. Difference Fourier map 618 5.4. Interference at truncation rod positions 621 5.5. Further improvements on the InSb(ll1) structure 622 5.6. -
X-Ray Diffraction and Spectroscopic Techniques
X-RAY DIFFRACTION AND SPECTROSCOPIC information that is averaged over macroscopic areas, in contrast TECHNIQUES FROM LIQUID SURFACES AND to scanning probe microscopies (SPMs), where local INTERFACES arrangements are probed (see, e.g., SCANNING TUNNELING MICROSCOPY). For an inhomogeneous interface, the reflectivity is David Vaknin an incoherent sum of reflectivities, accompanied by strong Ames Laboratory and Department of Physics Iowa State diffuse scattering, which, in general, is difficult to interpret University, Ames, Iowa definitively and often requires complementary techniques to support the x-ray analysis. Therefore, whenever the objective of the experiment is not compromised, preparation of well-defined DOI: 10.1002/0471266965.com077 homogeneous interfaces is a key to a more definitive and Cite: Characterization of Materials, John Wiley & Sons, 2012 straightforward interpretation. The X-ray fluorescence spectroscopy technique near total INTRODUCTION reflection from ion-enriched liquid interfaces were developed at the same time as the diffraction techniques (Bloch1985, Yun and X-ray and neutron scattering techniques are probably the most Bloch 1990, Daillant 1991) adding insight into ion adsorption and effective tools when it comes to determining the structure of phenomena at liquid interfaces (Shapovalov 2007). The facile liquid interfaces on molecular-length scales. These techniques tunablility of photon energy at synchrotron x-ray facilities are, in principle, not different from conventional x-ray diffraction enabled the extension of the fluorescence technique to obtain the techniques that are commonly applied to three-dimensional near-resonance surface x-ray absorption spectroscopy (XANES) crystals, liquids, solid surfaces etc. However, special of specific interfacial ions (Bu and Vaknin, 2009). Photon diffractometers and spectrometers that enable scattering from energy tunability also facilitated the application of anomalous fixed horizontal surfaces are required to carry out the diffraction and spectroscopic methods commonly used for bulk experiments.