Monsoon Over Eastern Asia (Including China, Japan, and Korea) and Adjoining Western Pacific Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Monsoon Over Eastern Asia (Including China, Japan, and Korea) and Adjoining Western Pacific Ocean Chapter 5 Monsoon over Eastern Asia (Including China, Japan, and Korea) and Adjoining Western Pacific Ocean 5.1 Introduction The study of monsoon and related weather phenomena over Eastern Asia has a long history. Prior to the 3rd century B.C., it was mostly the farmers who watched the weather seriously and maintained some kind of an ‘agricultural calendar’ of climatic events in connection with agricultural operations. In some central parts of China, these agricultural calendars are still in vogue, though other parts have opted for more modern methods. The modern instrumental period may be said to have begun about the close of the 19th century, but the observing network was very limited in the beginning and confined mostly to densely populated areas. Vast areas were uncharted. It is only recently from about the middle of the twentieth century that the observational network over the region as a whole has improved. Since 1959, a network of surface and upper-air observing stations was estab- lished on the highly elevated plateau of Tibet. It is mentioned that during the period, 1949–1963, the number of meteorological observing stations in China increased 30-fold (Cheng, 1963). A Chinese national project on the meteorology of the Tibetan Plateau was reported upon by Yeh and Gao (1979) who along with their many colleagues carried out excellent studies of the heat budget of the plateau and other related problems of the high-altitude region. The observational network on the plateau was further improved upon during a special experiment known as the Qinghai-Xizang Plateau Meteorology Experiment (QXPMEX) during the summer of 1979 which was conducted by Chinese scientists as part of the Global Weather Experiment, 1978–1979. Earlier, during the winters of 1974 and 1975, a GARP field project under the leadership mostly of Japanese scientists had conducted an ‘Air Mass Transformation Experiment’ (AMTEX) over the sea areas southwest of Japan to learn more about the energy and momentum exchanges between the sea and its overlying atmosphere and meso-scale cellular convection and cyclogene- sis that occurs when there is a cold air outbreak over the East China Sea and the Kuroshio current. Like the Indian Ocean, the South China Sea and the Western Pacific Ocean play important roles in monsoon circulation over Eastern Asia, the Maritime Continent and the Australian region, especially during advance and retreat of monsoon current across these ocean areas. In order to learn more about these K. Saha, Tropical Circulation Systems and Monsoons, 123 DOI 10.1007/978-3-642-03373-5_5, C Springer-Verlag Berlin Heidelberg 2010 124 5 Monsoon over Eastern Asia and Adjoining Western Pacific Ocean roles, the International Community led by Chinese scientists mounted an impres- sive array of field experiment called the South China Sea Monsoon Experiment (SCSMEX) in 1998, spanning the period from 1 May to 31 August, for carrying out intensive observations of surface and upper air parameters relating to monsoons. A wealth of new information was collected from this experiment, which became avail- able for further studies (e.g., Lau et al., 1998, 2000). The recent studies of monsoon over Eastern Asia are, therefore, based on an excellent coverage of data, though in some areas long-period data are still lacking. An excellent review of some of the recent studies which were carried out on the seasonal march of the East Asian Summer Monsoon has been provided by Ding (2004). It is well-known that during the peak summer months of July-August, monsoon over the tropical belt of Eastern Asia suddenly jumps to extratropical latitudes to cover such areas as Northern China, Northern Japan, Korea and Eastern Siberia with its poleward boundary near about 60◦N. We study monsoon over this extratropical belt of Eastern Asia in the latter part of this chapter. 5.2 Physical Features and Climate It is not easy to delineate the southern boundary of Eastern Asia which includes some of the most heterogeneous elements of the global terrain and features prac- tically the whole range of global climate from tropical to arctic. Here, along the southwestern boundary of mainland China, the mighty Himalaya mountain com- plex with the world’s highest mountain peak, Mount Everest, rising to an altitude of about 8.85 km a.s.l. and associated Tibetan plateau with a mean elevation of well over 4.6 km a.s.l. stand guard over the extensive lowlands of Northern and Eastern China which have several smaller high ground or hill ranges scattered all over the region. The Tibetan Plateau descends steeply both northward and eastward to the plains of China and this is clearly indicated by the direction of flow of water of the two mighty rivers, the Yantzekiang and the Hwang-Ho which flow in a zig-zag course eastward to the China Sea. Also, along the northwestern boundary of China lie a series of high-rise mountains, the Tien Shan and the Altay mountains, and several other lesser mountain ranges which extend northeastward to as far north as 60◦N or even beyond. A relief map of Eastern Asia showing the above-mentioned topographic features is at Fig. 5.1. Another important physical feature of China which exercises great influence upon the climate of the region is an extension of the vast Central Asian desert low- lands from Sinkiang in the west to the Gobi desert or even beyond to Manchuria and Eastern Siberia in the east. The Korean peninsula lies over the northeastern part of the region and juts out southward so as to have the Yellow Sea to its west and the Sea of Japan to the east. The Korean Strait separates the peninsula from the Islands of Japan which lie to the south and east. Besides the mainland, several large and small islands belonging to China and Japan lie scattered over the western North Pacific Ocean. 5.3 The Winter Season over Eastern Asia (November–March) 125 Fig. 5.1 Relief map of Eastern Asia The topography and the geographical location of Eastern Asia are responsible for a wide variety of climatic conditions in terms of temperature, pressure, airflow and rainfall. The seasons also are somewhat different here from those over the Indian Subcontinent. On account of more northerly location and greater continental and oceanic influences, the winter season starts early in November and lasts till the end of March. Summer monsoon starts in May and lasts till the end of September. The transition periods are usually April and October. 5.3 The Winter Season over Eastern Asia (November–March) 5.3.1 Temperature, Pressure, and Wind Mean air temperatures over Eastern Asia start falling rapidly from October onward and by January extremely low temperatures often dipping to a minimum of < –30◦C may prevail over the Gobi desert of Outer Mongolia and adjoining eastern Siberia as well as over the Korean peninsula (Fig. 5.2). In response to the temperature distribution, an extremely high pressure cell builds up over the region with maximum pressure exceeding 1032 hPa centered over the 126 5 Monsoon over Eastern Asia and Adjoining Western Pacific Ocean Fig. 5.2 Mean air temperatures (◦C) over Eastern Asia in January (after Watts, 1969) Mongolian region and a steep pressure gradient to the south and east to cover prac- tically the whole of Asia and a good part of northwestern Pacific Ocean close to the coast of Eastern Asia. Side by side, a deep low pressure cell develops in the vicinity of the Aleutian Islands area with the subtropical high pressure cell of the Pacific Ocean lying to its south with ridge along about 25◦N. Consistent with the prevailing temperature and pressure distributions described in the preceding para, there is strong anticyclonic circulation over a vast region of Eastern Asia and adjoining Pacific Ocean where it appears to merge with the sub- tropical anticyclonic circulation with its axis along about 30◦N. A strong cyclonic circulation prevails over the Aleutian Islands area. However, the circulations change rapidly with height, with westerlies dominating the flow at 500 and 200 hPa over the subtropical and midlatitude belts. These aspects of the airflow at low levels and at 500 and 200 hPa over Eastern Asia and adjoining Pacific Ocean during January are shown in Fig. 5.3 (Crutcher and Meserve, 1970). Several studies (e.g., Yeh and Gao, 1979; Murakami, 1981a,b; Boyle and Chen, 1987) have emphasized the great mechanical and thermodynamical influence of the Himalayan Massif and Tibetan Plateau on the upper air circulation over Asia, espe- cially Central and Eastern Asia where the winds are predominantly westerly above 5.3 The Winter Season over Eastern Asia (November–March) 127 Fig. 5.3 Streamlines showing mean atmospheric circulation over Eastern Asia and adjoining western Pacific Ocean during winter: (a) Low-level (925 mb), (b) 500 mb, and (c) 200 mb. Thick continuous line in (a) shows the NE–SW oriented convergence line over the Western North Pacific Ocean the low-level E/NE-ly tradewinds. During winter, upper-level midlatitude wester- lies migrate southward and blow around the Himalayan mountain complex and the Tibetan plateau. On striking the western side of the mountain barrier, the flow appears to divide itself into two parts, one flowing northward around the north- ern boundary of the mountain block and the other flowing southeastward around the southern boundary. The divided aircurrents appear to merge on the leeside over China, some distance away from the eastern side of the mountains. An interesting aspect of the midtropospheric circulation over the region is that it is the weakest (<10 m s–1) directly over the Tibetan Plateau at about 500 mb.
Recommended publications
  • Low Level Wind Patterns Over the Indian Ocean
    Low level wind patterns over the Indian Ocean Langlade Sébastien, tropical cyclone forecaster based on Hastenrath and Polzin, 2004, Dynamics of the windfield over the equatorial Indian Ocean, Q. J. R. Meteorol. Soc. (2004), 130, pp. 503–517 La Réunion, 2019/11/04 OUTLINE ■ Indian Ocean annual cycle and associated low level wind patterns ― Background ― Austral summer ― Austral winter ― Austral spring / autumn ■ Other wind patterns ■ Conclusion Tropical Indian Ocean surface winds patterns: Background Hastenrath etal., 2004 ■ 1 Austral summer 2 Austral autumn 3 Austral winter 2 Austral spring Tropical Indian Ocean surface winds patterns: Background Hastenrath etal., 2004 ■ 1 Austral summer 2 Austral autumn 3 Austral winter 2 Austral spring Austral summer (January to March) Austral summer (January to March) H L Austral summer (January to March) H L Austral summer (January to March) Monsoon Trough H (MT) L h Austral summer (January to March) Monsoon Trough définition: Low level trough (surface to 850 hPa) located equator within the mixing area between the monsoon and tradewinds flow. Associated equatorial winds have a strong meridional component. → Low level large scale vorticity associated. Austral summer (January to March) 18th February 2009 Winds at 925 hPa Equator Monsoon Trough (MT) Austral winter (June to August) Austral winter (June to August) L H L H Austral winter (June to August) L H Austral winter (June to August) ≥ 28 kt ≥ 16 kt H ≤ 4 kt L≤ 4 kt ≥ 16 kt Austral winter (June to August) India and south-eastern Asia monsoons ≥ 28 kt
    [Show full text]
  • Mesoscale Interactions in Tropical Cyclone Genesis
    OCTOBER 1997 SIMPSON ET AL. 2643 Mesoscale Interactions in Tropical Cyclone Genesis J. SIMPSON Earth Sciences Directorate, NASA/Goddard Space Flight Center, Greenbelt, Maryland E. RITCHIE Department of Meteorology, Naval Postgraduate School, Monterey, California G. J. HOLLAND Bureau of Meteorology Research Centre, Melbourne, Australia J. HALVERSON* Visiting Fellow, University Space Research Association, NASA/Goddard Space Flight Center, Greenbelt, Maryland S. STEWART NEXRAD OSF/OTB, National Weather Service, NOAA, Norman, Oklahoma (Manuscript received 21 November 1996, in ®nal form 13 February 1997) ABSTRACT With the multitude of cloud clusters over tropical oceans, it has been perplexing that so few develop into tropical cyclones. The authors postulate that a major obstacle has been the complexity of scale interactions, particularly those on the mesoscale, which have only recently been observable. While there are well-known climatological requirements, these are by no means suf®cient. A major reason for this rarity is the essentially stochastic nature of the mesoscale interactions that precede and contribute to cyclone development. Observations exist for only a few forming cases. In these, the moist convection in the preformation environment is organized into mesoscale convective systems, each of which have associated mesoscale potential vortices in the midlevels. Interactions between these systems may lead to merger, growth to the surface, and development of both the nascent eye and inner rainbands of a tropical cyclone. The process is essentially stochastic, but the degree of stochasticity can be reduced by the continued interaction of the mesoscale systems or by environmental in¯uences. For example a monsoon trough provides a region of reduced deformation radius, which substantially improves the ef®ciency of mesoscale vortex interactions and the amplitude of the merged vortices.
    [Show full text]
  • Indian Monsoon Basic Drivers and Variability
    Indian Monsoon Basic Drivers and Variability GOTHAM International Summer School PIK, Potsdam, Germany, 18-22 Sep 2017 R. Krishnan Indian Institute of Tropical Meteorology, Pune, India The Indian (South Asian) Monsoon Tibetan Plateau India Indian Ocean Monsoon circulation and rainfall: A convectively coupled phenomenon Requires a thermal contrast between land & ocean to set up the monsoon circulation Once established, a positive feedback between circulation and latent heat release maintains the monsoon The year to year variations in the seasonal (June – September) summer monsoon rains over India are influenced internal dynamics and external drivers Long-term climatology of total rainfall over India during (1 Jun - 30 Sep) summer monsoon season (http://www.tropmet.res.in) Interannual variability of the Indian Summer Monsoon Rainfall Primary synoptic & smaller scale circulation features that affect cloudiness & precipitation. Locations of June to September rainfall exceeding 100 cm over the land west of 100oE associated with the southwest monsoon are indicated (Source: Rao, 1981). Multi-scale interactions Low frequency Synoptic Systems:Lows, sub-seasonal Depressions, MTC variability – Large scale Active and monsoon Break monsoon Organized convection, Embedded mesoscale systems , heavy rainfall (intensity > 10 cm/day) Winds at 925hPa DJF West African Monsoon Asian Monsoon Austral Monsoon JJA Courtesy: J.M. Slingo, Univ of Reading Land/Sea Temperature contrasts Nov./Dec. West African Monsoon Asian Monsoon Austral Monsoon May/June Courtesy:
    [Show full text]
  • Analysis of Summer Monsoon Fluctuations Over India
    February 1976 M. Murakami 15 Analysis of Summer Monsoon Fluctuations over India By Masato Murakami Meteorological Research Institute, Tokyo (Manuscript received 26 August 1975, in revised form 17 November 1975) Abstract Temporal fluctuations appearing in the summer monsoon over India are investigated by using the data of 1962. By the method of spectrum analysis, it is revealed that two major periodicities exist, at least, in the temporal fluctuation of the monsoon. One is the oscillation around 5 days period and the other is around 15 days pericd. The oscillation around 5 days period appears mainly in the range from the north Bay of Bengal through the monsoon trough region in northern India. The structure of the disturbance which causes this periodicity is examined by the method of cross spec- trum analysis. The results show that the disturbance is a westward-moving one and its longitudinal wavelength is about 30*. This disturbance seems to represent the so-called monsoon low. The vertical structure of these monsoon lows indicates that their cyclonic circulation is prevailing in the lower troposphere and the axis of the trough slightly tilts westward. Moreover, the monsoon low is accompanied with a distinct warm core in the upper troposphere. In the lower levels, the amplitude of the temperature is small and the disturbance is neither warm- nor cold cored. It is also shown that the monsoon low has a steering level at the height around 500 mb level. The oscillation around 15 days period is revealed to be in connection with the active/weak cycle of monsoon. The intense wind fluctuations associated with this cycle appear both in the upper and the lower troposphere, being in phase with each other.
    [Show full text]
  • Tropical Cyclone: Climatology
    ESCI 344 – Tropical Meteorology Lesson 5 – Tropical Cyclones: Climatology References: A Global View of Tropical Cyclones, Elsberry (ed.) The Hurricane, Pielke Tropical Cyclones: Their evolution, structure, and effects, Anthes Forecasters’ Guide to Tropical Meteorology, Atkinsson Forecasters Guide to Tropical Meteorology (updated), Ramage Global Guide to Tropical Cyclone Forecasting, Holland (ed.) Reading: Introduction to the Meteorology and Climate of the Tropics, Chapter 9 A Global View of Tropical Cyclones, Chapter 3 REQUIREMENTS FOR FORMATION In order for a tropical cyclone to form, the following general conditions must be present: Deep, warm ocean mixed layer. ◼ Sea-surface temperature at least 26.5C. ◼ Mixed layer depth of 45 meters or more. Relative maxima in absolute vorticity in the lower troposphere ◼ Need a preexisting cyclonic disturbance. ◼ Must be more than a few degrees of latitude from the Equator. Small values of vertical wind shear. ◼ Disturbance must be in deep easterly flow, or in a region of light upper- level winds. Mean upward vertical motion with humid mid-levels. GLOBAL CLIMATOLOGY Note: Most of the statistics given in this section are from Gray, W.M., 1985: Tropical Cyclone Global Climatology, WMO Technical Document WMO/TD-72, Vol. I, 1985. About 80 tropical cyclones per year world-wide reach tropical storm strength ( 34 kts). About 50 – 55 each year world-wide reach hurricane/typhoon strength ( 64 kts). The rate of occurrence globally is very steady. Global average annual variation is small (about 7%). Extreme variations are in the range of 16 to 22%. Variability within a particular region is much larger than global variability. Most (87%) form within 20 of the Equator.
    [Show full text]
  • Measuring East Asian Summer Monsoon Rainfall Contributions by Different Weather Systems Over Taiwan
    2068 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 47 NOTES AND CORRESPONDENCE Measuring East Asian Summer Monsoon Rainfall Contributions by Different Weather Systems over Taiwan SHIH-YU WANG AND TSING-CHANG CHEN* Atmospheric Science Program, Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa (Manuscript received 2 July 2007, in final form 24 October 2007) ABSTRACT The east Asian summer monsoon (EASM) is characterized by a distinct life cycle consisting of the active, break, and revival monsoon phases. Different weather systems prevail in each phase following the change of large-scale flow regime. During the active phase, midlatitude cold, dry air moving equatorward into the tropics develops eastward-propagating fronts and rainstorms. The western ridge of the North Pacific sub- tropical anticyclone, which leads to the break phase, suppresses the development of synoptic-scale weather systems but enhances the diurnal heating. In the revival phase, the monsoon trough displaces the anticy- clonic ridge northward and increases typhoon activity. This study examines quantitative measurements of climatological rainfall contributed by these weather systems that will help to validate simulations of the EASM climate system and facilitate water management by government agencies. To accomplish this goal, rain gauge measurements in Taiwan were analyzed. It was found that in the active phase (late spring–early summer), mei-yu rainstorms forming over northern Indochina and the South China Sea contribute one-half of the total rainfall, and cold-frontal passages account for about 15%. During the synoptically inactive break spell (midsummer), rainfall is produced mainly by diurnal convection (51%) along the western mountain slopes of the island.
    [Show full text]
  • Specific Tropical Cyclone Track Types and Unusual Tropical Cyclone
    170 WEATHER AND FORECASTING VOLUME 11 Speci®c Tropical Cyclone Track Types and Unusual Tropical Cyclone Motions Associated with a Reverse-Oriented Monsoon Trough in the Western North Paci®c MARK A. LANDER University of Guam, Mangilao, Guam (Manuscript received 27 January 1995, in ®nal form 7 November 1995) ABSTRACT In its simplest description, the large-scale low-level circulation of summer over the western North Paci®c Ocean can be described in terms of low-latitude southwesterlies, a monsoon trough, and a subtropical ridge. When the axis of the monsoon trough is in its normal orientation (NW±SE), tropical cyclones tend to move northwestward on tracks close to those expected from climatology. As an episodic event, the axis of the monsoon trough extends farther north and east than normal and acquires a reverse (SW±NE) orientation. When the monsoon trough becomes reverse oriented, tropical cyclones within it tend to exhibit north-oriented motion and other speci®c unusual motions such as eastward motion at low latitude and binary interactions with other tropical cyclones along the trough axis. Approximately 80% of the tropical cyclones that are associated with a reverse- oriented monsoon trough move on north-oriented tracks. A tropical cyclone track type, de®ned herein as the ``S''-shaped track, is primarily associated with reverse orientation of the monsoon trough: 23 of 35 cases (66%) of S motion during the period 1978±94 occurred in association with a well-de®ned reverse-oriented monsoon trough. 1. Introduction the low-level monsoon ¯ow of the tropical WNP: the reverse-oriented monsoon trough (RMT).
    [Show full text]
  • Environmental Factors Contributing to Tropical Cyclone Genesis Over the Western North Pacific
    FEBRUARY 2013 Y O S H I D A A N D I S H I K A W A 451 Environmental Factors Contributing to Tropical Cyclone Genesis over the Western North Pacific RYUJI YOSHIDA AND HIROHIKO ISHIKAWA Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan (Manuscript received 28 October 2011, in final form 18 July 2012) ABSTRACT The flow environment associated with tropical cyclone genesis (TCG) over the western North Pacific was assessed via categorization into five flow patterns: monsoon shear line (SL), monsoon confluence region (CR), monsoon gyre (GY), easterly wave (EW), and preexisting tropical cyclone (PTC). Using reanalysis data and an objective algorithm, the authors defined ‘‘contribution scores’’ for the five flow patterns. Each score represents the contribution to TCG from each flow pattern, and scores were calculated for 908 TCG cases from 1979 to 2008 (30 yr). Of the major contribution flow patterns, SL accounted for 42% of TCGs, EW for 18%, CR for 16%, PTC for 11%, and GY for 6%. Seasonal variations in the occurrence frequency of these five patterns were clear, but interannual variations were not as apparent. Tropical cyclones often appear to be generated in conditions with multiple flow patterns. Thus, relationships between multiple flow patterns were investigated by comparing contribution scores. The SL and CR patterns were strongly correlated to each other, which can be explained by the monsoon southwesterly that organizes both patterns. The EW pattern tends to be independent of the other flow patterns. The PTC pattern has a relatively high correlation with CR, but does not have a correlation with SL or EW.
    [Show full text]
  • Monsoons, Itczs and the Concept of the Global
    manuscript submitted to Reviews of Geophysics 1 Monsoons, ITCZs and the Concept of the Global 2 Monsoon 1 2;3 4 3 3 Ruth Geen , Simona Bordoni , David S. Battisti , Katrina Hui 1 4 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK. 2 5 Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy. 3 6 California Institute of Technology, Pasadena, CA, USA. 4 7 Dept. of Atmospheric Sciences, University of Washington, Seattle, WA, USA. 8 Key Points: 9 • Theoretical understanding of the dynamics of Hadley cells, monsoons and ITCZs 10 is developing rapidly 11 • Some aspects of observed monsoons and their variability can now be understood 12 through theory 13 • Parallel theories should be reconciled and extended to account for zonal asymme- 14 tries and transients Corresponding author: Ruth Geen, [email protected] {1{ manuscript submitted to Reviews of Geophysics 15 Abstract 16 Earth's tropical and subtropical rainbands, such as Intertropical Convergence Zones (ITCZs) 17 and monsoons, are complex systems, governed by both large-scale constraints on the at- 18 mospheric general circulation and regional interactions with continents and orography, 19 and coupled to the ocean. Monsoons have historically been considered as regional large- 20 scale sea breeze circulations, driven by land-sea contrast. More recently, a perspective 21 has emerged of a Global Monsoon, a global-scale solstitial mode that dominates the an- 22 nual variation of tropical and subtropical precipitation. This results from the seasonal 23 variation of the global tropical atmospheric overturning and migration of the associated 24 convergence zone.
    [Show full text]
  • Sub-Seasonal Aspects of Indian Monsoon Variability
    Sub-seasonal aspects of Indian monsoon variability R. Krishnan Centre for Climate Change Research Indian Institute of Tropical Meteorology, Pune, India Workshop on subseasonal predictability European Centre for Medium Range Weather Forecasts Reading, UK , 2-5 November 2015 The South Asian Monsoon Tibetan Plateau India Indian Ocean Monsoon circulation and rainfall: A convectively coupled phenomenon Requires a thermal contrast between land & ocean to set up the monsoon circulation Once established, a positive feedback between circulation and latent heat release maintains the monsoon The year to year variations in the seasonal (June – September) summer monsoon rains over India are influenced internal dynamics and external drivers Primary synoptic & smaller scale circulation features that affect cloudiness & precipitation. Locations of June to September rainfall exceeding 100 cm over the land west of 100 oE associated with the southwest monsoon are indicated (Source: Rao, 1981 ). Low frequency Synoptic Systems:Lows, Depressions, sub-seasonal MTC variability – Large scale Active and monsoon Break monsoon Organized convection, Embedded mesoscale systems , heavy rainfall (intensity > 10 cm/day) Sub-seasonal cloudiness fluctuations over India: T. Yasunari 1979, J. Met.Soc. Japan 30 - 50 day 10 - 20 day Spatial map of correlation coefficients of cloudiness with reference point over Power spectra of cloudiness fluctuations over 10N - central India (17 .5N, 78 E) . Values > 0.4 are 15N, 72-84E. Units: (Cloudiness values)^2 .day Shaded and those less than -0.4 are dotted 10-20 day oscillation: Westward propagation in the Asian summer monsoon Keshavamurty 1973, Murakami, 1977 – Meridional winds, Krishnamurti et al. 1973: Spectrum of Tibetan High; Krishnamurti and Bhalme (1976); Murakami & Frydrych (1974), Murakami (1975), Krishnamurti et al.
    [Show full text]
  • Nature of Synoptic Scale Systems – Southwest Monsoon
    Nature of Synoptic scale systems – southwest monsoon Sunitha Devi. S ([email protected]) 17th December 2019, IITM, Pune Outline Introduction o Genesis of synoptic scale systems during monsoon o Why we should discuss them. Monsoon Depressions & higher intensity categories Low pressure areas & lower intense systems o Their characteristics as available in the Literature so far. Mid-tropospheric cyclonic circulations Off-shore troughs & vortices Mid-latitude westerly troughs Concluding remarks Introduction Environment for Synoptic Systems during the monsoon season (courtesy: Prof. P.V.Joseph) Area A: Moderate Vertical Wind Shear and so can support synoptic systems except severe cyclones Area B: Large Vertical Wind Shear due LLJ and TEJ and unable to have synoptic systems like Depressions and Cyclones Area C: Feeble Vertical Wind Shear & has an equatorial trough and high SST - produces intense tropical cyclones Area D: African Easterly Jet with core at 600 hPa (4 Kms) – Produces Easterly Waves Contribution to monsoon rainfall Fraction of monsoon precipitation attributed to (a) depressions, (b) low- pressure areas using an 800 km radius of influence. (Using k-means clustering analysis) [Hunt, K.M.R. & Fletcher, J.K. Clim Dyn (2019) 53: 1859. https://doi.org/10.1007/s00382-019-04744-x] Fraction of monsoon precipitation attributed to various types of low pressure systems Regions coloured by the LPA type responsible for the most precipitation. White stippling indicates where more than half the monsoon precipitation is attributed to LPAs; the white area indicates where no monsoon precipitation is attributed to LPAs Hunt, K.M.R. & Fletcher, J.K. Clim Dyn (2019) 53: 1859.
    [Show full text]
  • Compendium on Tropical Meteorology for Aviation Purposes
    Compendium on Tropical Meteorology for Aviation Purposes 2020 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 930 Compendium on Tropical Meteorology for Aviation Purposes 2020 edition WMO-No. 930 EDITORIAL NOTE METEOTERM, the WMO terminology database, may be consulted at https://public.wmo.int/en/ meteoterm. Readers who copy hyperlinks by selecting them in the text should be aware that additional spaces may appear immediately following http://, https://, ftp://, mailto:, and after slashes (/), dashes (-), periods (.) and unbroken sequences of characters (letters and numbers). These spaces should be removed from the pasted URL. The correct URL is displayed when hovering over the link or when clicking on the link and then copying it from the browser. WMO-No. 930 © World Meteorological Organization, 2020 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-10930-9 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]