Microsatellites to Identify the Impact of Genetic Parameters on Bumblebee Decline and Genes

Total Page:16

File Type:pdf, Size:1020Kb

Microsatellites to Identify the Impact of Genetic Parameters on Bumblebee Decline and Genes Promoters Prof. dr. ir. Guy Smagghe Faculty of Bioscience Engineering, Ghent University, Belgium Dr. Ivan Meeus Faculty of Bioscience Engineering, Ghent University, Belgium Chairman of the examination committee Prof. dr. ir. Peter Bossier Faculty of Bioscience Engineering, Ghent University, Belgium Members of the reading committee Prof. dr. Godelieve Gheysen Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. ir. Kris Verheyen Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. Dirk de Graaf Faculty of Sciences, Ghent University, Belgium Prof. dr. Felix Wäckers Lancaster Environment Centre, University of Lancaster, UK and R&D director Biobest, Belgium Dean of the Faculty of Bioscience engineering of Ghent University Prof. dr. ir. Guido Van Huylenbroeck Ghent University Rector Prof. dr. Anne De Paepe Faculty of Bioscience Engineering (FBE) Departement of crop protection Microsatellites to identify the impact of genetic parameters on bumblebee decline and genes associated with foraging Kevin Maebe Promotors: Prof. dr. ir. Guy Smagghe and Dr. Ivan Meeus Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Academic year: 2014-2015 Dutch translation of the title: Het gebruik van microsatellieten om de impact van genetische parameters op de achteruitgang van hommels en genen geassocieerd met foerageren te identificeren Please cite as: Maebe, K. (2015) Microsatellites to identify the impact of genetic parameters on bumblebee decline and genes associated with foraging. PhD thesis, Ghent University. Ghent, Belgium. pp 237. Cover photo: An ABgene PCR-plate with film (VWR), DNA strands (dnatestingexpert.com), and a bumblebee, probably Bombus terrestris, photographed by Trounce on 19 April 2007 in Ireland. Printing: University Press ISBN-number: 978-90-5989-777-9 Copyright © Kevin Maebe, Faculty of Bioscience engineering, Ghent University, 2015. All rights reserved. The author and the promoters give the authorization to consult and to copy parts of this work for personal use only. Any other use is limited by the Laws of Copyright. Permission to reproduce any material contained in this work should be obtained from the author. Acknowledgements ACKNOWLEDGEMENTS Bijna is het doctoraat volledig af. Inderdaad, “bijna” want ik moet hier nu wel nog eventjes de tijd nemen om een dankwoord neer te schrijven, want heel veel mensen hebben hun steentje bijgedragen tot dit werk. Bovenaan de lijst van de mensen die ik zou willen bedanken, staan mijn twee promotoren Prof. Dr. ir. Guy Smagghe en Dr. Ivan meeus. Bedankt Guy, voor de gegeven kans om dit doctoraat te kunnen afleggen binnen het Labo. Agrozoölogie. Hierdoor kreeg uw groep ook een volledig nieuw luik, namelijk populatie genetisch onderzoek. Bedankt Ivan, zonder deze zeer gedreven, inspirerende post-doc, was mijn thesis er zeker nooit gekomen. De urenlange vergaderingen, soms wel eens discussies, het oneindig keer verbeteren en aanvullen van papers, maar voornamelijk het enthousiasme waarmee je dingen overbrengt, chapeau! Echt iets wat ik ook zou willen kunnen in mijn toekomstige onderzoek of carrière. Mijn dank gaat ook uit naar Prof. Rasmont van de Universiteit van Bergen, Prof. Biesmiejer van Naturalis in Leiden, en Prof. Grootaerts van het Koninklijk Belgisch Instituut voor Natuurwetenschappen voor het openstellen van hun hommel collecties. Met hun hulp kon ik een unieke staalname uitvoeren op historische museumstalen. Daarnaast wil ik ook Dr. Jan De Riek van het ILVO bedanken die me hielp met de QTL- paper. Begin 2011 waren ik en Ivan de enigen die binnen de groep onderzoek op hommels uitvoerden, maar in de loop van de 4 jaar zijn er heel wat collega’s van verschillende nationaliteiten bijgekomen, deze wil ik ook bedanken voor de aangename werksfeer zowel in het labo als in de bureau. Maar mijn speciale dank gaat toch wel uit naar Jafar: “Thank you Jafar for being, besides a good colleague, also a good friend.” Mijn ouders wil ik uiteraard ook bedanken en dit voor de mogelijkheid die ze me gegeven hebben om me te laten studeren, en ook al vlotte het de eerste jaren niet zo goed, om in mij te blijven geloven, me te steunen, naar mijn gezaag te luisteren wanneer een bepaald experiment niet wilde lukken, maar voornamelijk om die lieve schatten van ouders te zijn! ii ACKNOWLEDGEMENTS Verder wil ik ook mijn broers en daarnaast ook mijn familie, ‘schoon’ familie en vrienden bedanken om er te zijn, me een optie te bieden voor ontspanning en te helpen ontsnappen aan alle stress. En ten laatste, maar als meest belangrijkste, wil ik ook men lieve schat bedanken. Bedanken voor al de steun en hulp die ze gedurende die laatste jaren (en misschien wel de meest zware jaren) gegeven heeft. Bedankt!! Kevin Maebe 8 februari 2015 iii Table of contents TABLE OF CONTENTS List of Figures..................................................................................................................... xi List of Tables ................................................................................................................... xvii List of supplementary Files .............................................................................................. xxi List of non-standard abbreviations ................................................................................ xxv Objectives and outline of this study ............................................................................... xxix 1 Chapter I: General introduction ................................................................................. 1 1.1 Bumblebees - Bombus ............................................................................................. 2 1.1.1 Taxonomy and phylogeny ................................................................................ 2 1.1.2 Life-cycle......................................................................................................... 7 1.1.3 Ploidy, sex determination and sociality ............................................................ 9 1.1.4 Morphology ................................................................................................... 12 1.1.5 Bumblebee vision .......................................................................................... 17 1.1.6 Cast determination and division of labour ...................................................... 23 1.1.7 Foraging, light sensitivity and size ................................................................. 24 1.2 The value of pollination and bumblebee decline .................................................... 25 1.2.1 The value of pollination ................................................................................. 25 1.2.2 Red list .......................................................................................................... 26 1.2.3 Causes of bumblebee decline ......................................................................... 30 1.2.3.1 Loss of habitat and food resources .............................................................. 30 1.2.3.2 Use of pesticides ........................................................................................ 33 1.2.3.3 Impact of non-native species and the spread of pathogens........................... 34 1.2.3.4 Climate change ........................................................................................... 36 1.2.4 Genetic impacts ............................................................................................. 36 1.2.5 Conservation .................................................................................................. 38 1.3 Microsatellites....................................................................................................... 38 1.3.1 General .......................................................................................................... 38 1.3.2 Limitations..................................................................................................... 44 1.3.3 Applications ................................................................................................... 46 2 Chapter II: Low genetic diversity and inbreeding in the bumblebee B. veteranus, a case study ........................................................................................................................... 49 2.1 Introduction .......................................................................................................... 50 2.2 Material and methods ............................................................................................ 51 2.2.1 Museum specimens ........................................................................................ 51 vi TABLE OF CONTENTS 2.2.2 DNA extraction and microsatellite protocol ................................................... 52 2.2.3 Data analysis .................................................................................................. 53 2.2.4 Genetic diversity and inbreeding .................................................................... 53 2.2.5 Population structure ....................................................................................... 54 2.2.6 Bottleneck presence ....................................................................................... 54 2.2.7 Simulation of gene diversity over time ........................................................... 55 2.3 Results .................................................................................................................
Recommended publications
  • Guzman-2021-109141.Pdf
    Biological Conservation 257 (2021) 109141 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Using historical data to estimate bumble bee occurrence: Variable trends across species provide little support for community-level declines Laura Melissa Guzman *, Sarah A. Johnson, Arne O. Mooers, Leithen K. M’Gonigle Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada ARTICLE INFO ABSTRACT Keywords: Bumble bees are globally important pollinators, especially in temperate regions, and evidence suggests that many Bumble bees species are declining. One recent high profile study by Soroye et al. (2020) applied occupancy models to dated ’ species declines historical collection data to quantify declines across North America and Europe. The authors modelled 66 species Occupancy models across a set of sites spanning both North America and Europe, rather than confining species to sites where they might be expected to occur. In addition, they inferred non-detections for time intervals where there is no evi­ dence that the site was visited (by forcing every site to have exactly 3 visits in each era). We use simulated data to (i) investigate the validity of methods used in that study and (ii) test whether a multi-species framework that incorporates species’ ranges and site visitation histories produces better estimates. We show that the method used by Soroye et al. (2020) yields biased estimates of declines, whereas our framework does not. We use such a model to provide revised and appreciably lower estimates for bumble bee community declines, with species- specific trends more closely matching classifications from IUCN.
    [Show full text]
  • Review of the Diet and Micro-Habitat Values for Wildlife and the Agronomic Potential of Selected Grassland Plant Species
    Report Number 697 Review of the diet and micro-habitat values for wildlifeand the agronomic potential of selected grassland plant species English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 697 Review of the diet and micro-habitat values for wildlife and the agronomic potential of selected grassland plant species S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A. Hopkins, A. Gundrey, R. Dunn & J. Tallowin Institute for Grassland and Environmental Research North Wyke Research Station, Okehampton, Devon EX20 2SB J. Vickery & S. Gough British Trust for Ornithology The Nunnery, Thetford, Norfolk IP24 2PU You may reproduce as many additional copies of this report as you like for non-commercial purposes, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA. However, if you wish to use all or part of this report for commercial purposes, including publishing, you will need to apply for a licence by contacting the Enquiry Service at the above address. Please note this report may also contain third party copyright material. ISSN 0967-876X © Copyright English Nature 2006 Project officer Heather Robertson, Terrestrial Wildlife Team [email protected] Contractor(s) (where appropriate) S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research, University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A.
    [Show full text]
  • Rhodobombus) Mesomelas Gerstaecker (Hymenoptera, Apidae
    1466 CHEMISTRY & BIODIVERSITY – Vol. 4 (2007) Atypical Secretions of the Male Cephalic Labial Glands in Bumblebees: The Case of Bombus (Rhodobombus) mesomelas Gerstaecker (Hymenoptera, Apidae) by Michae¨l Terzo* a), Irena Valterova´*b), and Pierre Rasmonta) a) University of Mons-Hainaut, Laboratory of Zoology, Avenue du Champs de Mars 6, B-7000 Mons (phone: þ3265373405; e-mail: [email protected]) b) Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo na´m. 2, CZ-166 10 Praha 6 (phone: þ420220183298; fax: þ420220183 582; e-mail: [email protected]) In bumblebees, the male secretion of the cephalic labial gland is species-specific. It is highly involved in the nuptial behavior, acting as a sexual attracting pheromone. Therefore, it is also used to accurately identify the species. In contrast to this common scheme, the secretions of Bombus mesomelas are found to be strongly reduced and do not include the most volatile compounds that are present in the secretions of all the other studied bumblebee species. These secretions correspond to cuticular hydrocarbons that can be found in all bumblebee species. This was also the case for another bumblebee species from the same Rhodobombus subgenus: Bombus pomorum. This atypical composition of the male cephalic labial gland secretions seems to indicate that, at least for these two species of Rhodobombus, these secretions are not used to attract virgin females from a long distance, as it is the case for all the other bumblebee species studied. 1. Introduction. – It is not always possible to identify all the bumblebee species accurately based on their morphological characters or color features.
    [Show full text]
  • The Conservation Management and Ecology of Northeastern North
    THE CONSERVATION MANAGEMENT AND ECOLOGY OF NORTHEASTERN NORTH AMERICAN BUMBLE BEES AMANDA LICZNER A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO September 2020 © Amanda Liczner, 2020 ii Abstract Bumble bees (Bombus spp.; Apidae) are among the pollinators most in decline globally with a main cause being habitat loss. Habitat requirements for bumble bees are poorly understood presenting a research gap. The purpose of my dissertation is to characterize the habitat of bumble bees at different spatial scales using: a systematic literature review of bumble bee nesting and overwintering habitat globally (Chapter 1); surveys of local and landcover variables for two at-risk bumble bee species (Bombus terricola, and B. pensylvanicus) in southern Ontario (Chapter 2); identification of conservation priority areas for bumble bee species in Canada (Chapter 3); and an analysis of the methodology for locating bumble bee nests using detection dogs (Chapter 4). The main findings were current literature on bumble bee nesting and overwintering habitat is limited and biased towards the United Kingdom and agricultural habitats (Ch.1). Bumble bees overwinter underground, often on shaded banks or near trees. Nests were mostly underground and found in many landscapes (Ch.1). B. terricola and B. pensylvanicus have distinct habitat characteristics (Ch.2). Landscape predictors explained more variation in the species data than local or floral resources (Ch.2). Among local variables, floral resources were consistently important throughout the season (Ch.2). Most bumble bee conservation priority areas are in western Canada, southern Ontario, southern Quebec and across the Maritimes and are most often located within woody savannas (Ch.3).
    [Show full text]
  • Microsatellite Analysis in Museum Samples
    Microsatellite analysis in museum samples reveals inbreeding before the regression of Bombus veteranus Kevin Maebe, Ivan Meeus, Jafar Maharramov, Patrick Grootaert, Denis Michez, Pierre Rasmont, Guy Smagghe To cite this version: Kevin Maebe, Ivan Meeus, Jafar Maharramov, Patrick Grootaert, Denis Michez, et al.. Microsatellite analysis in museum samples reveals inbreeding before the regression of Bombus veteranus . Apidologie, Springer Verlag, 2013, 44 (2), pp.188-197. 10.1007/s13592-012-0170-9. hal-01201286 HAL Id: hal-01201286 https://hal.archives-ouvertes.fr/hal-01201286 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:188–197 Original article * INRA, DIB and Springer-Verlag France, 2012 DOI: 10.1007/s13592-012-0170-9 Microsatellite analysis in museum samples reveals inbreeding before the regression of Bombus veteranus 1 1 1 2 KEVIN MAEBE , IVAN MEEUS , JAFAR MAHARRAMOV , PATRICK GROOTAERT , 3 3 1 DENIS MICHEZ , PIERRE RASMONT , GUY SMAGGHE 1Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium 2Royal Belgian Institute of Natural Sciences, Department Entomology, Vautierstraat 29, 1000 Brussels, Belgium 3Laboratoire de Zoology, Université de Mons-Hainaut, Place du Parc 20, 7000 Mons, Belgium Received 15 May 2012 – Revised 18 August 2012 – Accepted 27 September 2012 Abstract – The worldwide decline of pollinators is an emerging threat and is a matter both for ecological and economic concerns.
    [Show full text]
  • Bombus and Psithyrus (Hymenoptera: Apidae)
    • • \ a a a a • • á European Invertebrate Survey Atlas of the Bumblebees of the British Isles Bombus and Psithyrus (Hymenoptera: Apidae) Compiled by International Bee Research Association, London and the Biological Records Centre, Institute of Terrestrial Ecology, Natural Environment Research Council, Monks Wood Experimental Station, Huntingdon. INSTITUTE OF TERRESTRIAL ECOLOGY SEriViCE EDINBURGH LABORATOMES BUSH ESTATE, PEMMIK MIDLOTHIAN EH26 1980 Printed in England by Staples Printers St Albans Limited at The Priory Press o Copyright 1980 Published in 1980 by Institute of Terrestrial Ecology 68 Hills Road Cambridge CB2 1LA Also obtainable from IBRA, Hill House, Gerrards Cross Bucks SL9 ONR ISBN 0 964282 32 5 The photograph on the cover shows a worker Of Bombus lucorum, taken by F. G. Vernon. The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the CultUre Centre of Algae and Protozoa. ITE contributes to and draws upon the collective knowledge Of the fourteen sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant end animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from naturalor man-made change. The results of this research are aVailable to those responsible for the protection, management and wise use of our natural resources. Nearly half of ITE's work is research commissioned by customers, such as the Nature Conservancy Council who require information for wildlife conservation, the Forestry Commission and the Department of the Environment.
    [Show full text]
  • Bumble Bees of the Susa Valley (Hymenoptera Apidae)
    Bulletin of Insectology 63 (1): 137-152, 2010 ISSN 1721-8861 Bumble bees of the Susa Valley (Hymenoptera Apidae) Aulo MANINO, Augusto PATETTA, Giulia BOGLIETTI, Marco PORPORATO Di.Va.P.R.A. - Entomologia e Zoologia applicate all’Ambiente “Carlo Vidano”, Università di Torino, Grugliasco, Italy Abstract A survey of bumble bees (Bombus Latreille) of the Susa Valley was conducted at 124 locations between 340 and 3,130 m a.s.l. representative of the whole territory, which lies within the Cottian Central Alps, the Northern Cottian Alps, and the South-eastern Graian Alps. Altogether 1,102 specimens were collected and determined (180 queens, 227 males, and 695 workers) belonging to 30 species - two of which are represented by two subspecies - which account for 70% of those known in Italy, demonstrating the particular value of the area examined with regard to environmental quality and biodiversity. Bombus soroeensis (F.), Bombus me- somelas Gerstaecker, Bombus ruderarius (Mueller), Bombus monticola Smith, Bombus pratorum (L.), Bombus lucorum (L.), Bombus terrestris (L.), and Bombus lapidarius (L.) can be considered predominant, each one representing more than 5% of the collected specimens, 12 species are rather common (1-5% of specimens) and the remaining nine rare (less than 1%). A list of col- lected specimens with collection localities and dates is provided. To illustrate more clearly the altitudinal distribution of the dif- ferent species, the capture locations were grouped by altitude. 83.5% of the samples is also provided with data on the plant on which they were collected, comprising a total of 52 plant genera within 20 plant families.
    [Show full text]
  • Hymenoptera: Apidae) in Hungary, Central Europe
    Biodiversity and Conservation (2005) 14:2437–2446 Ó Springer 2005 DOI 10.1007/s10531-004-0152-y Assessing the threatened status of bumble bee species (Hymenoptera: Apidae) in Hungary, Central Europe MIKLO´SSA´ROSPATAKI*, JUDIT NOVA´K and VIKTO´RIA MOLNA´R Department of Zoology and Ecology, Szent Istva´n University, H-2103 Go¨do¨ll, Pa´ter K. u. 1., Hungary; *Author for correspondence: (e-mail: [email protected]; phone: +36-28-522-085, fax: +36-28-410-804 Received 11 November 2003; accepted in revised form 5 April 2004 Key words: Bombus, Endangered and vulnerable species, IUCN Red List categories, Species con- servation Abstract. Decline in the populations of bumble bees and other pollinators stress the need for more knowledge about their conservation status. Only one of the 25 bumble bee species present in Hungary is included in the Hungarian Red List. We estimated the endangerment of the Hungarian bumble bee (Bombus Latr.) species using the available occurrence data from the last 50 years of the 20th century. Four of the 25 species were data deficient or extinct from Hungary. About 60% of species were considered rare or moderately rare. Changes in distribution and occurrence frequency indicated that 10 of the 21 native species showed a declining trend, while only three species in- creased in frequency of occurrence. According to the IUCN Red List categories, seven species (33% of the native fauna) should be labelled as critically endangered (CR) and 3 (14%) as endangered (EN). Our results stress an urgent need of protection plans for bumble bees in Hungary, and further underlines the validity of concern over bumble bees all over Europe.
    [Show full text]
  • Intra and Interspecific Variability of the Cephalic Labial Glands' Secretions in Male Bumblebees: the Case of Bombus (Thoracobombus) Ruderarius and B
    Apidologie 36 (2005) 85–96 © INRA/DIB-AGIB/ EDP Sciences, 2005 85 DOI: 10.1051/apido:2004072 Original article Intra and interspecific variability of the cephalic labial glands' secretions in male bumblebees: the case of Bombus (Thoracobombus) ruderarius and B. (Thoracobombus) sylvarum [Hymenoptera, Apidae]1 Michaël TERZOa*, Klara URBANOVAb, Irena VALTEROVAb*, Pierre RASMONTa a Laboratory of Zoology, University of Mons-Hainaut (UMH), 6 avenue du Champ de Mars, 7000 Mons, Belgium b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, The Czech Republic Received 8 January 2004 – Revised 28 May 2004 – Accepted 25 June 2004 Published online 16 March 2005 Abstract – According to the species recognition concept of Paterson, the analyses of the secretions of the cephalic parts of the male labial glands confirm the conspecificity of Bombus (Thoracobombus) ruderarius ruderarius and B. (T.) r. montanus populations from the Pyrenees. These secretions were compared in B. ruderarius and B. sylvarum. We identified the same 7 major compounds as previously known for these species. We also identified 69 minor compounds. These minor compounds emphasise the close relationship between both species. Principal Component Analyses (PCA) were carried out on standardised peak areas of GC-MS chromatograms. The first PCA component is discriminant and shows no overlap between both species. Their secretions differ mostly by the relative concentration of their compounds rather than by their qualitative composition. On the contrary, PCA is unable to separate montanus from ruderarius. The larger variance in the secretions of B. ruderarius results from the very low concentration of the main compound (9-hexadecenol) in some specimens.
    [Show full text]
  • Plos ONE 10(5): E0125847
    RESEARCH ARTICLE Hitting an Unintended Target: Phylogeography of Bombus brasiliensis Lepeletier, 1836 and the First New Brazilian Bumblebee Species in a Century (Hymenoptera: Apidae) José Eustáquio Santos Júnior1, Fabrício R. Santos1, Fernando A. Silveira2* 1 Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 2 Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil * [email protected] OPEN ACCESS Abstract Citation: Santos Júnior JE, Santos FR, Silveira FA (2015) Hitting an Unintended Target: Phylogeography This work tested whether or not populations of Bombus brasiliensis isolated on mountain of Bombus brasiliensis Lepeletier, 1836 and the First tops of southeastern Brazil belonged to the same species as populations widespread in low- New Brazilian Bumblebee Species in a Century (Hymenoptera: Apidae). PLoS ONE 10(5): e0125847. land areas in the Atlantic coast and westward along the Paraná-river valley. Phylogeo- doi:10.1371/journal.pone.0125847 graphic and population genetic analyses showed that those populations were all Academic Editor: Sean Brady, Smithsonian National conspecific. However, they revealed a previously unrecognized, apparently rare, and poten- Museum of Natural History, UNITED STATES tially endangered species in one of the most threatened biodiversity hotspots of the World, Received: September 18, 2014 the Brazilian Atlantic Forest. This species is described here as Bombus bahiensis sp. n., and included in a revised key for the identification of the bumblebee species known to occur Accepted: March 25, 2015 in Brazil. Phylogenetic analyses based on two mtDNA markers suggest this new species to Published: May 20, 2015 be sister to B.
    [Show full text]
  • Miranda S Bane Thesis 2019.PDF
    University of Bath PHD Bumblebee foraging patterns: plant-pollinator network dynamics and robustness Bane, Miranda Award date: 2019 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 Bumblebee foraging patterns: plant-pollinator network dynamics and robustness Miranda Sophie Bane A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Physics December 2018 1 Copyright declaration Attention is drawn to the fact that copyright of this thesis/portfolio rests with the author and copyright of any previously published materials included may rest with third parties. A copy of this thesis/portfolio has been supplied on condition that anyone who consults it understands that they must not copy it or use material from it except as licenced, permitted by law or with the consent of the author or other copyright owners, as applicable.
    [Show full text]
  • The State of Ireland's Bees
    THE STATE OF IRELAND’S BEES www.ehsni.gov.uk Bee Leaflet SUMMARY Bees are essential because they are very important pollinators of plants. They help pollinate both crops and native plants, making them of huge economic and ecological importance to Ireland. Bees vary in their social organization. Bumblebees and honeybees are highly social insects. They live in colonies consisting of a queen, many female workers and some males. Other bees live alone instead of in a colony and are called solitary bees, though a few also live in rather simple societies. Only 3% of the 20,000 bee species worldwide are social, colony forming bees. There are 101 bee species in Ireland. Nineteen of these species are bumblebees, and more than half of these bumblebee species are in decline. Ireland has one native honeybee species. Most of the other 81 bee species in Ireland are solitary. Nearly half of these solitary species are in decline. A regional Red Data List of bees has been produced and tells us which bee species are in most danger in Ireland. Six species are critically endangered (CR), 7 are endangered (EN), 16 are vulnerable (VU) and 13 are near threatened (NT). Sadly, three bee species have become extinct in Ireland within the last 80 years. Despite lots of species being in serious decline, there are no protected bee species here. The Marsh Fritillary butterfly is the only insect that is protected by law in the Irish Republic. The Marsh Fritillary and five other butterfly species are the only insects protected by law in Northern Ireland.
    [Show full text]