SHERLOC) Investigation
Total Page:16
File Type:pdf, Size:1020Kb
Space Sci Rev (2021) 217:58 https://doi.org/10.1007/s11214-021-00812-z Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation Rohit Bhartia1 · Luther W. Beegle2 · Lauren DeFlores2 · William Abbey2 · Joseph Razzell Hollis2 · Kyle Uckert2 · Brian Monacelli2 · Kenneth S. Edgett3 · Megan R. Kennedy3 · Margarite Sylvia2 · David Aldrich2 · Mark Anderson2 · Sanford A. Asher4 · Zachary Bailey2 · Kerry Boyd5 · Aaron S. Burton6 · Michael Caffrey5 · Michael J. Calaway7 · Robert Calvet2 · Bruce Cameron2 · Michael A. Caplinger3 · Brandi L. Carrier2 · Nataly Chen2 · Amy Chen2 · Matthew J. Clark3 · Samuel Clegg5 · Pamela G. Conrad8 · Moogega Cooper2 · Kristine N. Davis6 · Bethany Ehlmann9 · Linda Facto2 · Marc D. Fries6 · Dan H. Garrison7 · Denine Gasway5 · F. Tony Ghaemi 10 · Trevor G. Graff7 · Kevin P. Hand2 · Cathleen Harris2 · Jeffrey D. Hein2 · Nicholas Heinz2 · Harrison Herzog2 · Eric Hochberg2 · Andrew Houck2 · William F. Hug1 · Elsa H. Jensen3 · Linda C. Kah11 · John Kennedy2 · Robert Krylo2 · Johnathan Lam2 · Mark Lindeman2 · Justin McGlown5 · John Michel5 · Ed Miller2 · Zachary Mills2 · Michelle E. Minitti12 · Fai Mok2 · James Moore2 · Kenneth H. Nealson13 · Anthony Nelson5 · Raymond Newell5 · Brian E. Nixon3 · Daniel A. Nordman2 · Danielle Nuding14 · Sonny Orellana2 · Michael Pauken2 · Glen Peterson5 · Randy Pollock2 · Heather Quinn5 · Claire Quinto2 · Michael A. Ravine3 · Ray D. Reid1 · Joe Riendeau2 · Amy J. Ross6 · Joshua Sackos5 · Jacob A. Schaffner3 · Mark Schwochert2 · Molly O Shelton2 · Rufus Simon2 · CarolineL.Smith15 · Pablo Sobron16 · Kimberly Steadman2 · Andrew Steele8 · Dave Thiessen2 · Vinh D. Tran7 · Tony Tsai 2 · Michael Tuite2 · Eric Tung2 · Rami Wehbe2 · Rachel Weinberg2 · Ryan H. Weiner7 · Roger C. Wiens5 · Kenneth Williford2 · Chris Wollonciej2 · Yen-Hung Wu2 · R. Aileen Yingst17 · Jason Zan2 Received: 23 July 2020 / Accepted: 20 February 2021 © The Author(s) 2021 The Mars 2020 Mission Edited by Kenneth A. Farley, Kenneth H. Williford and Kathryn M. Stack L.W. Beegle 1 Photon Systems Inc., 1512 Industrial Park St., Covina, CA 91722, USA 2 Jet Propulsion Laboratory, California Institution of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 3 Malin Space Science Systems, Inc., San Diego, CA, USA 4 Pittsburg University, Pittsburg, PA, USA 5 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 58 Page 2 of 115 R. Bhartia et al. Abstract The Scanning Habitable Environments with Raman and Luminescence for Organ- ics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Persever- ance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 µm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Labora- tory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 µm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 µs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 µm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are natu- rally separated with deep UV excitation (<250 nm), the Raman region ∼ 800 – 4000 cm−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Aut- ofocus Context Imager (ACI) to obtain target focus and acquire 10.1 µm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 µm/mapping pixel) will enable the first Mars in situ view of the spa- tial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7x7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which sam- ples to collect and cache for Mars sample return. Acronyms ACI Autofocus and Contextual Imager ADA Adaptive Caching Assembly ACA Adaptive Caching Assembly 6 NASA Johnson Space Center, Houston, TX 77058, USA 7 Jacobs Engineering, NASA Jonson Space Center, Houston, TX 77058, USA 8 Carnegie Insitutie of Washington, Washington, DC, USA 9 California Institution of Technology, Pasadena, CA, USA 10 Ghaemi Optical Engineering, San Diego, CA, USA 11 University of Tennessee, Knoxville, TN, USA 12 Framework, Silver Spring, MD, USA 13 University of Southern California, Los Angeles, CA, USA 14 Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD, USA 15 Natural History Museum, London, UK 16 SETI Institute, Mountain View, CA, USA 17 Planetary Science Institute, Tucson, AZ, USA Perseverance’s Scanning Habitable Environments. Page 3 of 115 58 ADC Analog to Digital Converter ADLIR Acquisition & Data Lines between Instrument and Rover AFT Allowable Flight range APXS Alpha Particle X-Ray Spectrometer ASTM ASTM International, formerly known as American Society for Testing and Materials ATLO Assembly, Test, Launch, and Operation C&DH Command & Data Handling CCD Charge-Couple Device CHE Camera Head Electronics ChemCam Chemistry Camera CM Curation Model CoB Chip-on-board COTS Commercial Off The Shelf CTE Coefficient of Thermal Expansion CVCM Collected Volatile Condensable Materials DEA Digital Electronics Assembly DITL Day-In-The-Life DM Data Manager DOF Depth of Field DRIFT Diffuse Reflectance Infrared Fourier Transform DSN Deep Space Network DUV Deep Ultraviolet EBL Electron-beam lithography EDL Entry Descent and Landing EDRs Engineering Data Records EM Engineering Model EMI/EMC Electromagnetic interference and electromagnetic compatibility EPO Education and Public Outreach FM Flight Model FOD Foreign Object Debris FOV Field of View FPA Focal Plane Array FPGA Field Programmable Gate Arrays FS Flight Spare FWHM Full Width Half Maximum gDRT gas Dust Removal Tool GDS Ground Data System HEOMD Human Exploration and Operations Mission Directorate HEPA High Efficiency Particulate Air HOPG Highly Oriented Pyrolytic Graphite I&T Integration & Test I-PDL Imaging operations Payload Downlink Lead I-PUL Imaging operations Payload Uplink and Downlink Lead iSDS Instrument Science Data System ISO International Origination for Standardization JSC Johnson Space Center LANL Los Alamos National Laboratory LED Light Emitting Diode 58 Page 4 of 115 R. Bhartia et al. LIF Laser Injection Filter LPF Long-Pass Filter LPS Laser Power Supply LVDS Low-Voltage Differential Signal M2020 Mars 2020 mission MAHLI Mars Hand Lens Imager MDL Micro-Devices Laboratory MEDA Mars Environmental Dynamics Analyzer MER Mars Exploration Rover MI Microscopic Imager MMRTG Multi-Mission Radioisotope Thermoelectric Generator MSL Mars Science Laboratory MSSS Malin Space Science Systems MTF modulation transfer function MUX Multiplexer NASA National Aeronautics and Space Administration NIST National Institute of Standards and Technology NIR Near infrared NVM Non-Volatile memory NVR Non-Volatile Residue OAP Off-Axis Paraboloidal OFHC Oxygen-Free, High thermal Conductivity PAHs Polycyclic Aromatic Hydrocarbons PCB Printed Circuit Board PCM Phase Change Material PDL Payload Downlink Lead PDS Planetary Data System PDU Power Distribution Unit PGE Product Generated Executable PIXL Planetary Instrument for X-ray Lithochemistry PQV Package Qualification and Verification PRT platinum resistance thermometer PSFs Point Spread Functions PSI Photon Systems Inc. PUL Payload Uplink Lead QE Quantum efficiency QTH Quartz Tungsten Halogen QRM Quantitative Relief Model RAMP Rover Avionics Mounting Plate RCE Rover computing elements RDRs Reduced Data Records RGB Red, Green and Blue RMI Remote Microscopic Imager ROI Region of Interest RPAM Rover Power Avionics Module SAM Sample Analysis at Mars SaU 008 Sayh al Uhaymir 008 SBA SHERLOC Body Assembly SCCD Spectrometer Charge-Couple Device Perseverance’s Scanning Habitable Environments. Page 5 of 115 58 Sc-PDL SHERLOC Science Payload Downlink Lead Sc-PUL SHERLOC Science Payload Uplink Lead SCT SHERLOC Calibration Target SDE Scanner Demodulator Electronics SE Spectrometer Electronics SfM Structure from Motion SHERLOC Scanning Habitable Environments for Raman and Luminescence for Organics and Chemicals SOL SHERLOC Operations Lead Sp-PDL Spectroscopy operations Payload Downlink Lead Sp-PUL Spectroscopy operations Payload Uplink and Downlink Lead SSE Scanner Servo Electronics STA SHERLOC Turret Assembly STP Space Technology Program STT System Thermal Test TAYF Test As You Fly TIG Tungsten Inert Gas TML Total Mass Loss TPRB Turret Power Regulation Board TQCM Thermoelectric Quartz Crystal Microbalance, TRCE Temperature cycling resistant