EA41CH14-Ingalls ARI 30 April 2013 15:56 Assessing the Use of Archaeal Lipids as Marine Environmental Proxies Ann Pearson1 and Anitra E. Ingalls2 1Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138; email:
[email protected] 2School of Oceanography, University of Washington, Seattle, Washington 98195; email:
[email protected] Annu. Rev. Earth Planet. Sci. 2013. 41:359–84 Keywords First published online as a Review in Advance on paleothermometry, lipid biomarkers, TEX86, Thaumarchaeota, March 7, 2013 Euryarchaeota, marine prokaryotes The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract by Harvard University on 12/05/13. For personal use only. This article’s doi: Archaea are abundant in marine and terrestrial aquatic environments, sed- 10.1146/annurev-earth-050212-123947 iments, and soils. They inhabit at least an 85◦C temperature range from Copyright c 2013 by Annual Reviews. the polar ocean to hydrothermal springs. Many Archaea produce membrane All rights reserved lipids called glycerol dialkyl glycerol tetraethers (GDGTs). Experiments on Annu. Rev. Earth Planet. Sci. 2013.41:359-384. Downloaded from www.annualreviews.org pure and enrichment cultures as well as an empirical correlation for ma- rine sediments (the TEX86 index) together show positive relationships be- tween temperature and the number of cyclopentane or cyclohexane rings in GDGTs. The resulting TEX86 paleotemperature proxy has been applied across a wide range of geologic history and depositional settings. The ex- act relationship between TEX86 and temperature, however, remains poorly understood. Environmental systems and cultures have different temperature dependencies, and the ecological niche(s) of aquatic Archaea are still a sub- ject of active investigation.