Physics E1bx: Assignments for April 7 – April 14 Homework #7: Light Rays; Reflection, Refraction; Lenses Due Tuesday, April 14, at 6:00PM

Total Page:16

File Type:pdf, Size:1020Kb

Physics E1bx: Assignments for April 7 – April 14 Homework #7: Light Rays; Reflection, Refraction; Lenses Due Tuesday, April 14, at 6:00PM Physics E1bx April 7 – April 14, 2015 Physics E1bx: Assignments for April 7 – April 14 Homework #7: Light Rays; Reflection, Refraction; Lenses Due Tuesday, April 14, at 6:00PM This assignment must be turned in by 6:00PM on Tuesday, April 14. Late homework will not be accepted. Please write your answers to these questions on a separate sheet of paper with your name and your section TF’s name written at the top. Turn in your homework to the mailbox marked with your section TF’s name in the row of mailboxes outside of Sci Ctr 108. You are encouraged to work with your classmates on these assignments, but please write the names of all your study group members on your homework. After completing this homework assignment, you should be able to… • understand what it means for an image to be real, virtual, upright, inverted, reduced, and enlarged • use the three principal rays (perpendicular, parallel, focal) to perform ray tracing for planar, concave, and convex mirrors • use the mirror and magnification equations • identify whether a lens is converging or diverging • use the three principal rays (central, parallel, focal) to perform ray tracing for converging and diverging lenses • use the thin lens and magnification equations • perform ray tracing for a combination of lenses • apply the thin lens equation and magnification equation to combination of lenses 1 Physics E1bx April 7 – April 14, 2015 Here are summaries of this module’s important concepts to help you complete this homework: 2 Physics E1bx April 7 – April 14, 2015 3 Physics E1bx April 7 – April 14, 2015 4 Physics E1bx April 7 – April 14, 2015 1. Lens and mirror (2 pts). A bright object is 20 cm from a thin lens with focal length f = 12 cm. 25 cm behind the lens is a convex spherical mirror with radius of curvature r = 20 cm, as in the figure below (not to scale). a) Draw a ray diagram for the lens only and locate the image formed by the lens. Calculate the image distance. Where is the image relative to the mirror? The ray diagram: parallel ray (blue), focal ray (green), central ray (red) 1 1 1 1 1 1 = − = − = di f do 12 cm 20 cm 30 cm The image is 30 cm behind (to the right of) the lens, which means it is 5 cm to the right of the mirror surface. € b) Taking the mirror into account, calculate the position of the final image formed by the mirror. Is the final image real or virtual? Calculate the magnification. Is it upright or inverted relative to the original object? Larger or smaller? The image produced by the lens becomes the object for the mirror. Since the object is located behind the mirror, the object distance is negative. (This is an example of a virtual object.) Plugging in the negative object distance into the mirror equation: 1 1 1 1 1 1 = − = − = di f do −10 cm −5 cm 10 cm The final image is 10 cm in front of the mirror, which is 15 cm behind the lens. Since the image is in front of the mirror, the light rays actually do converge at the image location, which makes it a real image. € 5 Physics E1bx April 7 – April 14, 2015 We can calculate the magnification from the mirror alone from the magnification equation: diM 10 cm mM = − = − = +2.0 , doM −5 cm which means that the mirror image is twice as big (and not inverted) relative to the mirror object. But the mirror object was the image produced by the lens, which also had been magnified: diL 30 cm € mL = − = − = −1.5, doL 20 cm meaning that the lens produced an image which was 1.5 times as big and inverted relative to the original object. The total magnification is given by the product of the two, which means that the final image is inverted and 3 times as big as the original object. € We could also draw a ray diagram for the mirror, but it’s a little strange because the object is behind the mirror, so light isn’t actually coming from it. (This was not asked of you, but you might be curious to know how it’s done.) Instead, we have to imagine the principal rays as incoming rays that are aimed at the object, and get reflected in the usual way. The parallel ray (blue) comes in parallel aimed at the virtual object, and reflects on a line through the focal point. The focal ray (green) comes in directed at both the virtual object and the focal point, but reflects parallel to the axis. And the perpendicular ray (red), comes in directed at the virtual object and the center of curvature, strikes the mirror at normal incidence, and returns exactly along the line it came in. as you can see from the diagram below, the rays do intersect to form a real image 10 cm in front of the mirror. 2. Optometry practice (2 pts). Your friends Abelard and Bernadette are both farsighted, and both wear glasses to correct their vision. Abelard has an unaided near point of 120 cm, and Bernadette has an unaided near point of 60 cm. a) Assume that both wear their glasses so that the lens is 2 cm in front of their eyes. What focal length would you prescribe for each of your friends to correct their farsightedness? For farsightedness, the goal of corrective lenses is to take an object at the desired near point (25 cm from the eye, usually) and produce an image at the patient’s unaided near point. That image then becomes the object for the second lens in the “system” (the patient’s eye). Let’s start with Abelard. An object 25 cm from his eye is only 23 cm from the lens, so do = +23 cm. When light from that object passes through the lens, we want it to form an image 120 cm from his eye, which is 118 cm from the lens. (i.e., on the same side as the object), which corresponds to a di = –118 cm. Plugging these into the thin lens equation, we can solve for f: 6 Physics E1bx April 7 – April 14, 2015 1 1 1 0.035 = + = fA 23 cm −118 cm cm so fA = 29 cm. For Bernadette, we do the exact same thing, except that we want the image produced by the glasses to be 60 cm from her eye instead of 120. That means di = –58 cm, so: 1 1 1 0.026 = + = fB 23 cm −58 cm cm or fB = 38 cm. b) Abelard forgets his glasses one day and borrows Bernadette’s. What will be his near point when wearing the wrong glasses? We want to know the object distance at which the glasses he’s wearing would produce an image at his unaided near point. If he’s wearing the right glasses, this is 25 cm from his eye, or an object distance of 23 cm from the lenses. But when he’s wearing the wrong glasses, we just need to solve the thin lens equation for do: 1 1 1 1 1 = + = + fB do di do −118 cm 1 1 1 = + do 38 cm 118 cm do = 29 cm The near point is measured from the eye, so his near point while wearing Bernadette’s glasses is 2 cm longer than this, or 31 cm. 3. Mirror, mirror (2 pts). You peer into a curved mirror at a distance of 1 m. The image of your face in the mirror is inverted and half the size of your face. a) Where is the image located? Is it real or virtual? The magnification is -0.5 and the object distance is +1 m. Calculating the image distance: di m = − ⇒ di = −mdo = +0.5 m. do We can conclude that the image is 0.5 cm in front of the mirror. Because the image distance is positive, the image must be real. a, cont.) What is the mirror’s radius of curvature? Is it concave or convex? We can use the mirror equation to solve for the focal length: 1 1 1 1 1 1 = + = + = f do di 1 m 0.5 m 33.3 cm The mirror’s focal length is 33.3 cm, which means the radius of curvature is r = 2 f = +66.6 cm . A positive r means the center of curvature is in front of the mirror, so the mirror is concave. 7 Physics E1bx April 7 – April 14, 2015 b) Draw a ray diagram for the image of your face in the mirror. Your diagram should include the mirror, object, image, focal point, and three principal rays. You should use a straightedge, but the diagram does not have to be exactly to scale. The diagram is shown below. The parallel ray is in blue, focal ray in green, and perpendicular ray in red. 8 Physics E1bx April 7 – April 14, 2015 4. Putting Everything Together (Exam-Type Question): Compound Microscope (4 pts) Two thin convex lenses and an object are arranged as shown below. Two rays from the tip of the object are drawn in order to determine the location of the image produced by lens 1. Lens 2 is placed so that one of its focal points coincides with the location of the image produced by lens 1. a) Treating the image produced by lens 1 as an object for lens 2, draw two principal rays from the tip of this image that pass through lens 2.
Recommended publications
  • Lens Equation – Thin Lens
    h s’ s f h’ Refraction on Spherical Surface θa=α +φ ; φ = β +θb ⎫ an sinθ a= n bsinθ b n⎬aα + n bβ = ( n b− )φ n a anθ a≅ n b θ b ⎭ h h h tanα = ; tanβ = ; tanφ = s + δ s'−δ R − δ h h h n n n− n ≅α ; β ≅; φ ≅ ⇒a+ b = b a s s' R s s' R Refraction on Spherical Surface n n n− n a+ b = b a Magnification s s' R R positive if C on transmission side; negative otherwise y − y′ tanθ = tanθ = na y nb y′ a b = − s s′ s s′ nasinθ a= n bsin θ b y′ na ′ s esl angallFor sm m = = − y n s tanθ≅ sin θ b Refraction on Spherical Surface n n n− n a+ b = b a . A fish is 7.5Example: Fish bowl s s' R cm from the front of the bowl. y′ n′ s Find the location and magnification of the m = = − a fish as seen by the cat.bowl. Ignore effect of y nb s Radius of bowl = 15 cm. na = 1.33 R negative b O n n n− n n n− n n I s’ a+ b =b a b = b a− a s s' R s' R s s n 1 s′ = b = =6 .− 44cm n− n n 0− . 331 . 33 a b a− a − R s −cm15 7 . 5 cm n′ s 1 .( 33 6− . 44cm ) The fish appears closer and larger. m= − a= − ∗ 1= . 14 nb s 1 7 .cm 5 Lenses • A lens is a piece of transparent material shaped such that parallel light rays are refracted towards a point, a focus: – Convergent Lens Positive f » light moving from air into glass will move toward the normal » light moving from glass back into air will move away from the normal » real focus Negative f – Divergent Lens » light moving from air into glass will move toward the normal » light moving from glass back into air will move away from the normal » virtual focus Lens Equation – thin lens n n n− n n n n− n a b+ b = a b+ a = a b 1s s 1' R 1 2s s 2' R2 For air, na=1 and glass, nb=n, and s2=-s1’.
    [Show full text]
  • Location of Cardinal Points from the ABCD Matrix for the General Optical System
    EE482 Fall 2000 Handout #2 Page 1 Location of Cardinal Points from the ABCD Matrix for the General Optical System I II n1 n2 F1 P1 N1 P2 N2 F2 f1 f2 Figure 1 Cardinal points of a system which is characterized by an ABCD matrix between an input plane I and an output plane II. Cardinal Point Measured Function Special Case From To (n1=n2) First Focal Point P1 F1 -n1/(n2C)-1/C First Principle Point I P1 (n1-n2D)/(n2C)(1-D)/C First Nodal Point I N1 (1-D)/C (1-D)/C Second Focal Point P2 F2 -1/C -1/C Second Principle Point II P2 (1-A)/C (1-A)/C Second Nodal Point II N2 (n1-n2A)/(n2C)(1-A)/C Table 1 When analyzing an optical system, we often are first interested in basic properties of the system such as the focal length (or optical power of the system) and the location of the focal planes, etc. In the limit of paraxial optics, any optical system, from a simple lens to a combination of lenses, mirrors and ducts, can be described in terms of six special surfaces, called the cardinal surfaces of the system. In paraxial optics, these surfaces are planes, normal to the optical axis. The point where the plane intersects the optical axis is the cardinal point corresponding to that cardinal plane. The six special planes are: First Focal Plane Second Focal Plane First Principle Plane Second Principle Plane First Nodal Plane Second Nodal Plane Once we know the location of these special planes, relative to the physical location of the lenses in the system, we can describe all of the paraxial imaging properties of the system.
    [Show full text]
  • Laboratory 7: Properties of Lenses and Mirrors
    Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes through the lens and converges to a real image at the focal point on the other side of the lens. A diverging lens is thinner at the center than at the periphery and light from an object at infinity appears to diverge from a virtual focus point on the same side of the lens as the object. The principal axis of a lens is a line drawn through the center of the lens perpendicular to the face of the lens. The principal focus is a point on the principal axis through which incident rays parallel to the principal axis pass, or appear to pass, after refraction by the lens. There are principle focus points on either side of the lens equidistant from the center (See Figure 1a). Figure 1a: Converging Lens, f>0 Figure 1b: Diverging Lens, f<0 In Fig. 1 the object and image are represented by arrows. Two rays are drawn from the top of the object. One ray is parallel to the principal axis which bends at the lens to pass through the principle focus. The second ray passes through the center of the lens and undeflected. The intersection of these two rays determines the image position. The focal length, f, of a lens is the distance from the optical center of the lens to the principal focus. It is positive for a converging lens, negative for a diverging lens.
    [Show full text]
  • 1.0 Measurement of Paraxial Properties of Optical Systems
    1.0 MEASUREMENT OF PARAXIAL PROPERTIES OF OPTICAL SYSTEMS James C. Wyant Optical Sciences Center University of Arizona Tucson, AZ 85721 [email protected] If we wish to completely characterize the paraxial properties of a lens, it is necessary to measure the exact location of its cardinal points, that is, its nodal points, focal points, and principal points. For a lens in air the nodal points and principal points coincide. For a thin lens, the two principal points coincide at the center of the lens, so the only required measurement is the focal length, while for a thick lens two of the three quantities--focal length, two focal points, or two principal points--must be determined. 1.1 Thin Lenses 1.1.1 Measurements Based on Image Equation The simplest measurements of the focal length of a thin lens are based on the image equation 1 1 1 + = (1.1) p q f where p is the object distance from the lens (positive if the object is before the lens), q is the image distance from the lens (positive if the image is after the lens), and f is the focal length of the lens. If the lens to be tested has a positive power, a real image can be formed of a pinhole source, and the distances p and q can be measured directly. When the lens to be tested has a negative power, it should be combined with a positive auxiliary lens having sufficient power so that the combination forms a real image. The focal length can then be determine for the auxiliary lens alone and the combination of lenses.
    [Show full text]
  • Optics Course (Phys 311)
    Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Phys Geometrical Optics: Refraction (Lenses) Lesson 2 of 2 311 Slide 1 Objectives covered in this lesson : 1. The refracting power of a thin lens. 2. Thin lens combinations. 3. Refraction through thick lenses. Phys Geometrical Optics: Refraction (Lenses) Lesson 2 of 2 311 Slide 2 The Refracting Power of a Thin Lens: The refracting power of a thin lens is given by: 1 푃 = 푓 Vergence: is the convergence or divergence of rays: 1 1 푉 = and 푉′ = 푝 푖 ∴ 푉 + 푉′ = 푃 A diopter (D): is a unit used to express the power of a spectacle lens, equal to the reciprocal of the focal length in meters. Phys Geometrical Optics: Refraction (Lenses) Lesson 2 of 2 311 Slide 3 The Refracting Power of a Thin Lens: Individual Activity Q: What is the refracting power of a lens in diopters if the lens has a focal length = 20 cm ? Phys Geometrical Optics: Refraction (Lenses) Lesson 2 of 2 311 Slide 4 Thin Lens Combinations: If the optical system is composed of more than one lens (or a combination of lenses and mirrors) which are located so that their optical axes coincide: the final image can be obtained by working in steps: 1. Consider the nearest lens only, find the image of the object through this lens. 2. The image in step 1 is the object for the second (adjacent) optical component: find the image of this object. This can be done both geometrically or numerically 3.
    [Show full text]
  • Chapter 23 the Refraction of Light: Lenses and Optical Instruments
    Chapter 23 The Refraction of Light: Lenses and Optical Instruments Lenses Converging and diverging lenses. Lenses refract light in such a way that an image of the light source is formed. With a converging lens, paraxial rays that are parallel to the principal axis converge to the focal point, F. The focal length, f, is the distance between F and the lens. Two prisms can bend light toward the principal axis acting like a crude converging lens but cannot create a sharp focus. Lenses With a diverging lens, paraxial rays that are parallel to the principal axis appear to originate from the focal point, F. The focal length, f, is the distance between F and the lens. Two prisms can bend light away from the principal axis acting like a crude diverging lens, but the apparent focus is not sharp. Lenses Converging and diverging lens come in a variety of shapes depending on their application. We will assume that the thickness of a lens is small compared with its focal length è Thin Lens Approximation The Formation of Images by Lenses RAY DIAGRAMS. Here are some useful rays in determining the nature of the images formed by converging and diverging lens. Since lenses pass light through them (unlike mirrors) it is useful to draw a focal point on each side of the lens for ray tracing. The Formation of Images by Lenses IMAGE FORMATION BY A CONVERGING LENS do > 2f When the object is placed further than twice the focal length from the lens, the real image is inverted and smaller than the object.
    [Show full text]
  • Chapter 33 Lenses and Op Cal Instruments
    Chapter 33 Lenses and Opcal Instruments Units of Chapter 33 • Thin Lenses; Ray Tracing • The Thin Lens Equation; Magnification • Combinations of Lenses • Lensmaker’s Equation • The Human Eye; Corrective Lenses • Magnifying Glass 33-1 Thin Lenses; Ray Tracing Thin lenses are those whose thickness is small compared to their radius of curvature. They may be either converging (a) or diverging (b). 33-1 Thin Lenses; Ray Tracing Parallel rays are brought to a focus by a converging lens. 33-1 Thin Lenses; Ray Tracing A diverging lens makes parallel light diverge; the focal point is that point where the diverging rays would converge if projected back. 33-1 Thin Lenses; Ray Tracing The power of a lens is the inverse of its focal length: 1 P = f Lens power is measured in diopters, D: 1 D = 1 m-1. 33-1 Thin Lenses; Ray Tracing Ray tracing for thin lenses is similar to that for mirrors. We have three key rays: 1. This ray comes in parallel to the axis and exits through the focal point. 2. This ray comes in through the focal point and exits parallel to the axis. 3. This ray goes through the center of the lens and is undeflected. 33-1 Thin Lenses; Ray Tracing 33-1 Thin Lenses; Ray Tracing For a diverging lens, we can use the same three rays; the image is upright and virtual. 33-2 The Thin Lens Equation; Magnification The thin lens equation is similar to the mirror 1 1 1 equation: + = d0 di f 33-2 The Thin Lens Equation; Magnification The sign conventions are slightly different: 1.
    [Show full text]
  • Lecture 32 – Geometric Optics Spring 2013 Semester Matthew Jones Thin Lens Equation
    Physics 42200 Waves & Oscillations Lecture 32 – Geometric Optics Spring 2013 Semester Matthew Jones Thin Lens Equation First surface: Second surface: Add these equations and simplify using 1 and → 0: 1 1 1 1 1 (Thin lens equation) Thick Lenses • Eliminate the intermediate image distance, • Focal points: – Rays passing through the focal point are refracted parallel to the optical axis by both surfaces of the lens – Rays parallel to the optical axis are refracted through the focal point – For a thin lens, we can draw the point where refraction occurs in a common plane – For a thick lens, refraction for the two types of rays can occur at different planes Thick Lens: definitions First focal point (f.f.l.) Primary principal plane First principal point Second focal point (b.f.l.) Secondary principal plane Second principal point Nodal points If media on both sides has the same n, then: N1=H 1 and N2=H 2 Fo Fi H1 H2 N1 N2 - cardinal points Thick Lens: Principal Planes Principal planes can lie outside the lens: Thick Lens: equations Note: in air ( n= 1) 1 1 1 x x = f 2 1 1 1 (n −1)d + = o i effective = ()n −1 − + l l s s f focal length : l o i f R1 R2 nl R1R2 ( − ) ( − ) = − f nl 1 dl = − f nl 1 dl Principal planes: h1 h2 nl R2 nl R1 ≡ yi = − si = − xi = − f Magnification: MT yo so f xo Thick Lens Calculations 1. Calculate focal length 1 1 1 1 1 2. Calculate positions of principal planes 1 1 3.
    [Show full text]
  • Physics 1230: Light and Color Lecture 17: Lenses and Ray Tracing
    Physics 1230: Light and Color Chuck Rogers, [email protected] Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 Lecture 17: Lenses and ray tracing Online and Written_HW9 due TONIGHT EXAM 2 is next week Thursday in-class 1 Last Time: Refraction all the way through block What was happening in Activity 8? U2L05 3 LastConvex Time: Concaveand concave and convex lenses lenses • Each of the two surfaces has a spherical shape. • Light can penetrate through the lenses and bend at the air-lens interface. 4 We build lenses out of glass with non-parallel sides Glass If slabs aren’t parallel - lens Glass A B C Which ray of light will have changed direction the most upon exiting the glass? We build lenses out of glass with non-parallel sides Put film, Retina here! 7 We build lenses out of glass with non-parallel sides Put film, Retina here! • Light rays bent towards each other… CONVERGING LENS. • The less parallel the two sides, the more the light ray changes direction. • Rays from a single point, converge to a single point on the other side of the lens (and then start diverging again). 8 Converging (convex) lens Light rays coming in parallel focus to a point, called the focal point optical axis Focus f Light focusing properties of converging lens a good light collector or solar oven; can also fry ants with sunlight (but please don’t do that) 10 Light focusing properties of converging lens The “backwards” light collector: create a collimated light beam 11 Ray tracing to understand lenses and images Ray tracing: 1.
    [Show full text]
  • A Simple and Inexpensive Schlieren Optical System Using a Fresnel Lens by Ted Kinsman Associate Professor RIT Photographic Sciences Dept
    A simple and inexpensive Schlieren Optical system using a Fresnel Lens By Ted Kinsman Associate Professor RIT Photographic Sciences Dept. January, 2020 [email protected] Schlieren imaging is a fairly standard optical technique for visualizing heat, sound, or pressure differences in air. Technically, a schlieren system is able to see clear disturbances in air due to slight differences in the speed of light in the air. The technique can be sensitive enough to see the heat rising off a human hand at room temperature. High quality schlieren systems typically use large optical mirrors that are expensive and beyond the budget of most optics classes. Here I will present the simipilest design for a system that any student can build, align, and experiment with. This simple design uses a plastic Fresnel lens. A Fresnel lens is a flat lens that is most commonly found in overhead projectors. Historical Fresnel lens were used for light gathering applications in which an image was not dependent on the quality of the lens. The first Fresnel lens was designed for a light house. In recent years, the Fresnel optics have improved so it was time to see if a Fresnel lens could be using in a schlieren system. The real interest in a Fresnel lens is that the lens has a large clear aperture – this means that relatively large objects can be tested in this area. High quality lenses with a 250 mm clear aperture are very expensive. The ideal lens for a simple schlieren system is between �/4 and �/8. The �-number of the lens is simply the ratio of the focal length of the lens divided by the clear aperture of the lens.
    [Show full text]
  • Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr
    Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming) Purpose: The purpose of this lab is to introduce students to some of the properties of thin lenses and mirrors. The primary goals are to understand the relationship between image distance, object distance, and image scale. Theoretical Basis: You may be familiar with simple lenses and how they form images. The lens of your eye or a camera collects and focuses light and forms an image on retina or a piece of film or digital detector. A positive, convex glass lens works in much the same way to produce a real image. In contrast, a negative, concave lens can only produce virtual images. See the lecture notes of your textbook for a more complete description. Let’s explore the properties of some simple lenses. Begin by noting the equipment at each lab station. You will find a light source, a selection of lenses and mirrors, a white screen for viewing the images, and some sort of split-screen thing. We’ll come back to it later. We will use the scale on the bench to measure the location of each component and compute the object and image distances. Note that there is a small offset between the light source support and the actual location of the illuminated screen that serves as the object. Your lab TA will give you the value of this correction. Note that the light source “object” has a mm scale and two arrows at right angles so that you can determine the size of the image and its orientation on the screen when imaged by the lens.
    [Show full text]
  • 201 & 202-03 Imaging with a Thin Lens
    OPTI-201/202 Geometrical Geometrical Optics OPTI-201/202 and Instrumental 3-1 © Copyright2018JohnE.Greivenkamp Section 3 Imaging With A Thin Lens OPTI-201/202 Geometrical Geometrical Optics OPTI-201/202 and Instrumental 3-2 Object at Infinity © Copyright2018JohnE.Greivenkamp An object at infinity produces a set of collimated set of rays entering the optical system. Consider the rays from a finite object located on the axis. When the object becomes more distant the rays become more parallel. z When the object goes to infinity, the rays become parallel or collimated. An image at infinity is also represented by collimated rays. z OPTI-201/202 Geometrical Geometrical Optics OPTI-201/202 and Instrumental 3-3 Parallel Rays © Copyright2018JohnE.Greivenkamp Parallel rays are used to represent either an object at infinity or an image at infinity. z One way to think of this is that parallel lines intersect at a point at infinity. Without a lens, these rays could represent either an object at negative infinity or an image at positive infinity. With a lens, it is easy to tell an object from an image: z z But an image at positive infinity can serve as an object at negative infinity: z Infinity is infinity and it does not matter if we are discussing positive or negative infinity. OPTI-201/202 Geometrical Geometrical Optics OPTI-201/202 and Instrumental 3-4 On Axis and Off Axis – Object at Infinity © Copyright2018JohnE.Greivenkamp An on-axis object is aligned with the optical axis and the image will be on the optical axis: z For an off-axis object, collimated light still enters the optical system, but at an angle with respect to the optical axis.
    [Show full text]